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ABSTRACT

A novel quantum key distribution (QKD) protocol, based on all unselected states of a quantum system, which
set the alphabet with continuous set of letters, is proposed. Employing all states of the Hilbert space leads to the
maximal quantum uncertainty of transmitted states and therefore an eavesdropper receives the minimal amount
of information. For the case of two-dimensional Hilbert space, our protocol allows secure transmission at the
error rate higher than that one for the BB84-protocol and comparable with the characteristics of the best known
QKD-protocols. However, with increasing the dimensionality of the Hilbert space the critical error rate for our
protocol increases and in the limit of infinite-dimensional space the protocol becomes non-threshold.
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1. INTRODUCTION

Quantum cryptography could well be the first practical application of the rapidly developing field of quantum in-
formation [1]. Since 1970s, when the idea of quantum cryptography was proposed first [2,3], a number of different
quantum key distribution (QKD) protocols implementing it have been suggested [3–6]. Despite their diversity
all of them are based on a beautiful idea employing a basic “no-cloning” principle of quantum mechanics—
impossibility of copying arbitrary quantum states [7]. Thanks to this, an eavesdropper cannot intercept the
quantum communication channel without disturbing a transmitting message if it contains a set of incompatible,
i.e., essentially quantum, not governed by the rules of classical logic, states. Moreover, any attempt of obtaining
any information about this set of states inevitably disturbs the transmitted message.

Keeping this advantage of quantum physics for cryptography in mind, any QKD-protocol uses messages
entirely composed of an incompatible set of quantum states or so called quantum alphabet that consists of
incompatible “letters”. Various QKD protocols are distinguished in essence only by different alphabets, which
ensure secure message transmission up to an error level that determines the protocol efficiency. Analyzing
distortions in received messages one can reveal an eavesdropping attack, but in order to establish a secure
connection one should also be capable to resist such attacks. All discussed in the literature QKD-protocols have
relatively low critical quantum bit error rate (QBER) [1,8] above which they do not ensure secure transmission.

It is eventually assumed that all perturbations in the transmitted information are caused by an eavesdropper.
However in reality, imperfections of the apparatus used for realization of the QKD schemes and external sources
of noise in the quantum channel (besides the eavesdropper) also perturb the information and therefore set a
limit to the maximum length of the secure quantum channels used in the QKD schemes [1]. Such limitations
significantly bound the applications of quantum cryptography making impossible secure transmission over an
arbitrary distance and in order to overcome this obstacle one has to develop more efficient QKD protocols.

For the optimal efficiency analysis of various protocols different efficiency criteria are used in the literature [9],
which is inconvenient for the objective comparison of the protocols. In this paper, we use the most appropriate,
in our view, criterion based on the estimation of classical Shannon information transmitted through the secure
channel of the QKD scheme [10].

Typical QKD scheme includes three basic players, Alice, Bob, and Eve (the conventional names for the
sender, receiver, and eavesdropper, respectively), which communicate via a quantum channel. Despite the
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communication channel between Alice, Bob, and Eve is quantum, they in the final analysis exchange classical
information. Therefore, the classical Shannon information can serve as a valid measure for the quantitative
analysis of the QKD-protocols. It corresponds to the joint probability distribution of the measurement results
(which are classical) in the quantum system Alice-Eve-Bob.

Any QKD alphabet is formed by selection of a set of quantum states at the input and output of the quantum
channel. The selection rules determine different QKD-protocols. For example, the QKD-protocol proposed
in 1992 by Bennett, hence the name B92 [4], uses only two quantum states, which is the minimum limit of
incompatible “letters” composing the alphabet. The first QKD-protocol proposed in 1984 by Bennett and
Brassard (BB84) [3] gives another example of the protocol in which four quantum incompatible states are used.

In the other limiting case, when selection of quantum states is not performed and, therefore, the alphabet
consists of all states of the Hilbert space, we have a new QKD-protocol, which we analyze in this paper. We will
show that this protocol has essential advantages in comparison with other known QKD-protocols. Specifically,
its critical QBER exceeds that one for the BB84 protocol and generalization of our protocol to the case of mul-
tidimensional Hilbert space further significantly increases the critical QBER. In the limit of infinite-dimensional
Hilbert space, the protocol has no error threshold and the critical QBER approaches its maximum possible value.
This means that our QKD-protocol can basically work at any level of external errors or eavesdropping attacks
(except most brutal intercept–resend attacks), which is the novel feature for the QKD-protocols.

2. COMPATIBLE INFORMATION AS A QUANTUM INFORMATION MEASURE
FOR QKD

In quantum cryptography, Alice (A), Bob (B), and Eve (E) are different, kinematically independent quantum
systems. Thus, the quantum events related to these systems represented by the different Hilbert spaces are
mutually compatible. Due to this property, any pair of quantum events at the input and output of the quantum
channel can be considered classically. Quantum specific of the channel reveals then only in the form of intrinsic
quantum uncertainty of events at the input and output of the channel. We will call information related to the
mutually compatible events in two quantum systems the compatible quantum information [11, 12]. A natural
quantitative measure for the compatible information is the standard mutual Shannon information functional of
the classical input–output (Alice-Bob) joint probability distribution PAB :

IAB [PAB ] = SA[PA] + SB [PB ]− SAB [PAB ], (1)

where S[P ] is the classical Shannon entropy functional for the joint, P = PAB , and marginal, P = PA, PB ,
probability measures [10].

In quantum information theory, like in the classical theory of information, one has to clarify which quantum
events are used for the information exchange between quantum systems and define a set of elementary events
of which any message is composed. Elementary events for a quantum system are given by the wave functions
representing the state vectors of the system. Mathematically, a choice of basis events or the information basis
can be given by defining a set of positive operators Êν representing a non-orthogonal expansion of the unit
operator [13] or the positive operator valued measure (POVM) [14]:

1̂ =
∑

Êν . (2)

For simplicity, we will in the following consider two-dimensional spaces, when not defined otherwise.

Two limiting cases of the compatible information, completely selected and non-selected information, are
defined by the two limiting cases of the unit operator expansion—two-component orthogonal POVM [15]

1̂ = |µ 〉 〈µ|+ |µ̃ 〉 〈 µ̃| (3)

and continuous non-orthogonal [12]

1̂ =
∫
ν

|ν 〉 〈ν| dVν , (4)
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where |µ 〉 and |µ̃ 〉 are the arbitrary pair of the orthogonal wave functions and dVν = sin θdθdϕ/(2π) with the
standard angular parameters on the Bloch sphere.

The completely selected information determines an information exchange between two quantum systems A
and B with the joint density matrix ρ̂AB through the selected set of orthogonal quantum events. The orthogonal
basis determined by the unitary two-parametric transformations UA(α) and UB(β) in the quantum systems A
and B, respectively, can be chosen differently and the selected information also depends on the choice made:

IAB(α, β) =
∑
k,l

Pαβ
AB(k, l) log2

Pαβ
AB(k, l)

Pα
A(k)P β

B(l)
, (5)

where parameters α = (θ1, ϕ1) and β = (θ2, ϕ2) are given by the standard Bloch sphere angles. Joint distribution

Pαβ
AB(k, l) = TrAB

(
Êα

A(k)⊗ Êβ
B(l)

)
ρ̂AB ,

where Êν
A,B(k) = |k 〉νA,B 〈k|νA,B , is defined on the basis states |k 〉αA and |l 〉βB of the input (Alice) and output

(Bob) of the channel, which are the orthogonal basis states of the respected Hilbert spaces HA and HB .

For the non-selected information, the information exchange equally includes all participating in the exchange
states. Therefore, the information basis states of the information channel are all wavefunctions of the Hilbert
spaces of a pair of participating in the exchange quantum systems. The respected non-selected information is
then given as

IAB =
∫
α

∫
β

PAB(dα,dβ) log2

PAB(dα,dβ)
PA(dα)PB(dβ)

, (6)

where PAB(dα,dβ) = TrAB

(
ÊA(dα)⊗ ÊB(dβ)

)
ρ̂AB, ÊA,B(dν) = |ν 〉A,B 〈ν|A,B dVν .

Note that the non-selected information is equal to the selected one, which is averaged over all orientations of
the orthogonal bases:

IAB =
∫
α

∫
β

IAB(α, β)
dVαdVβ

V 2
, V =

∫
dVν = 2. (7)

3. QKD PROTOCOL EMPLOYING ALL STATES OF THE HILBERT SPACE

In quantum cryptography, the purpose of Alice and Bob is to establish a secure connection, which prevents
copying of useful transmitted information by Eve. It has been proved that such secure connection is possible
if the amount of information Bob received from Alice exceeds information Eve received either from Alice or
Bob [16]. This condition can be written as

IAB > max
(
IAE , IBE). (8)

If the condition (8) is fulfilled, it is possible with the help of special methods of privacy amplification to reduce up
to zero the amount of useful information Eve can gain eavesdropping the quantum channel. Even if the condition
(8) is not fulfilled, Alice and Bob can establish a secure connection using the advantage distillation protocols [1].
We do not consider this option in the paper, but keep in mind that if one uses it the security criterion for our
QKD-protocol can be improved.

Eve, in her turn, also tries to use optimal strategies of eavesdropping, i.e., Eve tries to gain maximum informa-
tion about the transmitting message at the given error rate, performing any physically allowed transformations
and minimizing the error level she causes:

IAE,BE = max
IAB=const

IAE,BE . (9)
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All known QKD-protocols using finite-dimensional spaces of states are built on the alphabets with the finite
discrete set of incompatible quantum “letters”, which can be realized as the pure states of a quantum system.

In this paper, we suggest a qualitatively new QKD-protocol, which is based on the alphabet including all
states of the Hilbert space. In other words, this alphabet consists of an infinite number of quantum “letters”,
which are formed by the arbitrary superpositions of the orthogonal basis states of the Hilbert space HA.

Let us first consider the case of two-dimensional space (multidimensional case is considered in section 4).

Elementary step of the QKD-protocol, i.e., the transmission of a single “letter” or state from Alice to Bob,
can be outlined as follows:

1. Alice generates and transmits via a quantum channel to Bob a randomly chosen state |β 〉.
2. Eve eavesdrops the channel performing an unitary bipartite transformation UBE with her initial probe state

|0 〉E and with transmitted by Alice to Bob state |β 〉B and measures her final probe state. Despite Eve
does not measure the transmitted from Alice to Bob state directly, she disturbs it by the transformation
UBE .

3. Bob reads the perturbed state using for the measurement an arbitrary projector because he has no a priori
information about the received message, but the dimension of the Hilbert space HA.

When the transmission of the entire message, which consists of an essential number of elementary QKD-steps,
is completed, Alice and Bob should perform on the transmitted raw key classical post-transmission procedures.

First, they determine the mutual probability distribution PAB(α, β) and calculate the average amount of the
information IAB per the transmission. For this, Alice and Bob disclose and then discard random part of the
measurement results transmitting them over an insecure classical channel. The information transmitted from
Alice to Bob, IAB , can be calculated with the help of Eq. (7), whereas the information transmitted between Eve
and Alice and Bob, IAE , IBE , can be calculated using theoretical model of eavesdropping, which we will discuss
in the following subsection.

Second, they need to check the security condition (8). If it is fulfilled, Alice and Bob decide that the secret
key transfer is completed and perform then classical error correction and privacy amplification algorithms with
the raw key. Otherwise, the transmitted key is not used.

3.1. Information analysis of the protocol

For the information analysis of our protocol let us first calculate the amount of information Bob received from
Alice, IAB , and Eve received from Alice and Bob, IAE,BE , at the condition (9) of optimal eavesdropping.

Initial state of the quantum system Alice-Eve-Bob ρ̂
(1)
ABE = ρ̂

(1)
AB ⊗|0 〉E 〈0|E , which is described by the tensor

product of the entangled antisymmetric pair Alice-Bob ρ̂
(1)
AB = ||− 〉〉AB 〈〈 −||AB and an initial Eve’s state |0 〉E ,

is transferred after eavesdropping the channel by Eve into the final state that is an entangled state of Alice,
Bob, and Eve, ρ̂

(2)
ABE : ρ̂

(1)
ABE

UBE−→ ρ̂
(2)
ABE . Let us assume that the Alice’s state |α 〉 is totally entangled with

the transmitting state |β 〉 and is, for example, the antisymmetric Bell state ||−〉〉 =
(|α 〉

∣∣∣β̃ 〉− |α̃ 〉 |β 〉)/√2,
which means that Alice perfectly knows the transmitting state |β 〉, because maximal value of mutual selected
information is equal to unity for the entangled states.

We can assume (without reducing the generality of our consideration) that the unitary transformation UBE

performed by Eve has the form: {
|0 〉B |0 〉E

UBE−→ |0 〉B |Φ00 〉E + |1 〉B |Φ01 〉E
|1 〉B |0 〉E

UBE−→ |0 〉B |Φ10 〉E + |1 〉B |Φ11 〉E .
(10)

The unitarity imposes the following restrictions, which are due to the orthogonality and normalization conditions:

〈Φ00 |Φ10〉+ 〈Φ01 |Φ11〉 = 0, |Φ00|2 + |Φ01|2 = |Φ10|2 + |Φ11|2 = 1. (11)
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It was suggested in reference [9] based on the numerical estimations and then proved in reference [17] that in
the QKD-protocols BB84 and B92 the Eve’s state at the optimal eavesdropping lies in two-dimensional Hilbert
space. This is also true (and can be proved by analogy with reference [9]) for our QKD-protocol. Therefore, the
states |Φij 〉 can be written, taking into account the conditions (11), as a superposition of the two basis states:

−→|Φ 〉 =




|Φ00 〉
|Φ01 〉
|Φ10 〉
|Φ11 〉


 =




γ00 γ01

γ10 γ11

γ11 γ10

γ01 γ00




(|0 〉E
|1 〉E

)
, (12)

where the transformation parameters

γmn = (−1)mn cos (θ − m
π

2
) cos (ϕ − n

π

2
) (13)

are determined via the two angles θ, ϕ, controlled by Eve.

Resulted bipartite density matrices Alice-Bob, Alice-Eve, and Bob-Eve obtained by averaging of the three-
partite density matrix over the third system enable us to calculate the respective mutual information:

ρ̂
(2)
AB = TrEρ̂

(2)
ABE → IAB ,

ρ̂
(2)
AE = TrBρ̂

(2)
ABE → IAE ,

ρ̂
(2)
BE = TrAρ̂

(2)
ABE → IBE .

(14)

In our QKD-protocol Alice sends Bob any pure state with equal probability and neither Bob nor Eve have
an a priori chosen basis for the measurement, thus both Eve and Bob use each an arbitrary chosen bases.
After averaging over a large number of measurements we receive due to the equation (7) that the non-selected
information is exactly the information measure for our QKD-protocol.

3.2. Calculations results

Results for the mutual Alice-Bob, Alice-Eve, and Bob-Eve non-selected information (IAB , IAE , and IBE , respec-
tively) calculated with the help of equations (6), (10), (12), and (14) are shown in figure 1 versus parameters θ
and ϕ controlled by Eve (see equation (13)). One can clearly see from the figure that for the all values of θ, ϕ
we have IAE ≥ IBE , thus we will focus in the following only on IAE .

The optimal eavesdropping condition (9) requires that we look for the maximal IAE = IAE(θ, ϕ) at the given
value of IAB = IAB(θ, ϕ). Detailed analysis of data in figure 1 reveals that the optimal eavesdropping can be
realized at θ = π/4− ϕ, which corresponds to the solid line in figure 1d.

For the most purposes it is enough to consider only the case of optimal eavesdropping, which corresponds to
the solid line at θ = π/4 − ϕ shown in figure 2. From analysis of this figure one can see that at θ = 0 the level
of eavesdropping attacks and the respected losses of information are equal to zero. At θ = π/4 the intervention
of Eve is maximal and she acts similar to Bob gaining maximal possible information.

The security condition (8) is fulfilled up to a certain critical value θ
(1)
0 = π/8, which is the intersection point

(1) of the curves for IAB and IAE in the figure 2. If Eve performs the unitary transformation (10) with θ < θ
(1)
0 ,

then Alice and Bob can establish a secure connection, otherwise it is not established.

3.3. Definitions of the error rate in the QKD-protocols

In order to estimate the error rate in the different QKD-protocols and, therefore, their efficiency different quanti-
tative characteristics can be introduced. One of the most accepted in the literature characteristics—the quantum
bit error rate (QBER)—was suggested to characterize the error rate in the sifted key. It is defined as the ratio
of wrong bits in the transmitted message to the total number of received bits. Obviously, the QBER for an
ideal quantum channel without noise is equal to zero and one can use the QBER for estimation of the Eve’s
interference. Generally, any QKD-protocol works up to a certain critical error rate level, which is defined as the

Proc. of SPIE Vol. 5161     345



0.00

0.14

0.28

0 π/80

π/8

π/4

(a)

ϕ

I A
B
, b

it

θ
π/4

0.00

0.14

0.28

0 π/80

π/8

π/4

(b)

ϕ

I A
E
, b

it

θ
π/4

0.00

0.05

0.10

0 π/80

π/8

π/4

(c)

ϕ

I B
E
, b

it

θ
π/4

0

π/8

π/4

0 π/8 π/4

(d) 

θ

ϕ

Figure 1. Alice-Bob (a), Alice-Eve (b), and Bob-Eve (c) mutual Shannon information versus Eve’s eavesdropping pa-
rameters θ, ϕ. Figure (d) shows results of figure (a) for the Alice-Bob mutual Shannon information (IAB) as a contour
plot; solid line corresponds to the case of optimal eavesdropping.

critical QBER. The larger the critical QBER value, the better stability of the protocol to the errors caused by
Eve.

However, if the QKD-scheme without external noise does not show the QBER equal to zero, then we cannot
use the QBER characteristic for estimation of the QKD-protocol efficacy and for comparison with other QKD-
protocols. In this case, the QBER as it has been defined previously simply does not reflect the real level of the
Eve interference.

Keeping in mind that Eve performs the unitary transformation (10), we can define the QBER, which we will
define as q, as the probability that Eve flips the transmitted to Bob bit of information:

q = 〈Φ01 |Φ01〉 = 〈Φ10 |Φ10〉 = sin2 θ.

This definition is essentially rely on the structure of the transformation (10) performed by Eve. It is worth also
to note that, as it was shown in [9], the QBER is not always an adequate characteristic of the degree of Eve
eavesdropping attacks, for instance in the B92 protocol.

Therefore, we suggest to use another characteristic, which we call the compatible information error rate
(CIER) and designate as Q, that naturally represents the degree of the Eve interference into the information
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Figure 2. Alice-Bob (dotted and dashed lines for the reconciliated and non-reconciliated basis states of Alice and Bob,
respectively) and Alice-Eve (solid line) mutual Shannon information at the optimal eavesdropping condition.

transmission in terms of the compatible information:

Q = 1− IAB

Imax
AB

∈ [0, 1]. (15)

Here IAB is the Alice–Bob compatible information with the presence of eavesdropping and Imax
AB is its maximal

possible value without Eve attacks. Qualitatively, the CIER is the error rate of the secret key that can be distilled
from the correlations per transmission. By contrast with the QBER (q), the CIER (Q) is, in our view, the most
adequate parameter for the information properties of the QKD-protocols, even in the presence of internal noise
caused by the protocol itself.

Without Eve eavesdropping attacks, both parameters q and Q are equal to zero, which means that there are
no transmission errors. At the maximal level of Eve interference with the transmitting information, we have
Q = 1 and q = 0.5, which correspond to the maximal possible level of errors caused by Eve. At the critical point
θ
(1)
0 , where the amount of information gained by Eve is equal to the amount of information received by Bob,

Q
(1)
0 
 0.6 and q

(1)
0 
 0.15.

At the error level exceeding critical, i.e., at Q > Q
(1)
0 , the protocol does not ensure security of the transmitted

data and Alice and Bob decide that the transmission is not completed.

Note that the described scheme does not require bases reconciliation of Alice and Bob, i.e., selection of only
that part of the message for which Alice and Bob used the same information basis, via an additional information
exchange over the classical channel. However, one can significantly improve stability of the protocol for a noisy
quantum channel using the bases reconciliation considered in the next section.

3.4. Basis reconciliation

After transmission of the entire message through a noisy quantum channel Alice and Bob can select only those
transmitted data for which they used approximately similar orthogonal bases. In our case, the set of basis states
is continuous, thus it is necessary to split it into several approximately equal areas and count the bases similar, if
they are in the same area on the Bloch sphere. Depending on the number of such areas, the mutual information
in the system Alice-Bob per single transmission is raised from 0.28 to 1 bit.

This can be clearly understood because for an initial state of the Alice-Bob system in the form of antisym-
metric Bell state the mutual selected information is equal to unit when one uses similar bases of Alice and Bob. If
the bases of Alice and Bob are different, the amount of information in a single transmission will be less than unit.
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Figure 3. Maximal amount of information per single transmission versus the number of areas the Hilbert space is split
in.

The calculated dependency of the maximal amount of information per single transmission versus the number of
areas in which we split the Hilbert space is shown in figure 3.

We restrict the actions of Eve by the measurement of the probe state immediately after the the unitary
transformation (10). Therefore, one can suppose that Eve does not affect the data selection with the reconciling
bases and does not use additional transformations after the bases have been reconciled. Then, she gains no
additional information.

Information that Bob receives from Alice per the entire message transmission after the bases reconciliation
is shown in figure 2 (dashed line). The new critical value θ

(2)
0 is bigger than θ

(1)
0 and, therefore, the critical error

rate Q0 and q0 are then significantly higher: Q
(2)
0 
 0.81 and for the QBER we have q

(2)
0 
 0.254.

Note that the bases reconciliation procedure significantly increases the required number of messages trans-
mitted over an insecure classical channel, because we have to transmit information about the area in which
the randomly chosen basis lies. Respectively, the number of filtered messages transmitted through a quantum
channel is also decreased. It is not necessary, however, to infinitely increase the accuracy. As a rule, errors
during the data transmission have typical for a specific experimental QKD setup finite level. Therefore, for the
bases reconciliation it is sufficient to increase the accuracy according to the external noise conditions up to the
level that ensures the error rate less than the critical one at which the QKD-protocol guarantees the secure
transmission of data in accordance with the security condition (8).

4. MULTIDIMENSIONAL CASE

We can fundamentally improve the properties of our QKD-protocol using multidimensional Bob’s and Alice’s
spaces (D > 2). In multidimensional case, the maximally possible amount of mutual selected information is
equal to ID

max = log2 D and grows infinitely at D → ∞. Maximally possible amount of non-selected information
is equal to the amount of accessible information [18]:

ID
accesible = log2 D − 1

ln 2

D∑
k=2

1
k

,

which in the limit D → ∞ is restricted by the value of I∞ 
 0.61 bit.
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After bases reconciliation of Alice and Bob the amount of information in the system Alice-Bob is given
by the maximally possible selected information, whereas in the Alice-Eve system—by the maximally possible
non-selected information, independently from a specific type of unitary transformation performed by Eve in the
multidimensional case. Then, the critical CIER in the limit of D → ∞ is equal to unit:

Q∞
0 = lim

D→∞
QD

0 = 1− lim
D→∞

ID
accessible

ID
max


 1− lim
D→∞

0.61
log2 D

= 1. (16)

This means that increasing the dimensionality of the Alice-Bob system one can reach the critical error rate
(QBER or CIER), which exceeds any given value (below the unit). The dependency of the critical CIER versus
the dimensionality of the Hilbert space is shown in figure 4.
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D

Figure 4. Critical CIER Q0 versus the dimensionality D of the Hilbert space.

The essential qualitative novelty of our QKD-protocol that employs all states of the Hilbert space is that
it can work, in principle, at any imperfections or noise in the quantum channel (either internal or external)
and has no any critical CIER value after which the protocol becomes insecure. For any given CIER value one
can select the required dimensionality of the Alice-Bob space in order to meet this value of CIER (figure 4).
Essentially more difficult is the question about Eve’s transformation structure to perform optimal eavesdropping
in the multidimensional case, but the outlined above result is qualitatively correct, despite any specific structure
of the Eve’s transformation.

The described above advantage of our QKD-protocol can be clarified as follows. When Alice sends a message,
neither Eve nor Bob do not know a priori in which basis it is transferred. Therefore, both Eve and Bob are
perplexed in the multidimensional space—they can retrieve less amount of information from the transmitted
message with the increasing dimensionality of the Hilbert space. After the partial bases reconciliation, which is
described in section 3.4, Bob significantly increases the amount of information per single transmission filtering
only strongly correlated transmissions, i.e., the transmissions for which Alice and Bob used approximately equal
bases. Eve, in her turn, cannot filter the transmissions and the amount of information she can retrieve remains the
same. Therefore, the larger the dimension of the Hilbert space, less equally Eve and Bob receive the information.

5. EXPERIMENTAL SETUP FOR QKD PROTOCOL WITH CONTINUOUS
ALPHABET

An experimental setup for our QKD-protocol with continuous alphabet “letters” of which are coded with polar-
izations of the photons is shown in figure 5. In these notations, a random “letter” of the alphabet corresponds
to an arbitrary photon polarization.
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Figure 5. Experimental setup for the QKD-protocol with continuous alphabet. At the Alice side, the laser (1) generates
single photons polarization of which is rotated by the polarizer (2) at a random angle. These photons are transmitted to
Bob via the quantum channel (3). The measurement part of the QKD-setup at the Bob side includes the polarizer (2)
that rotates polarization of the incident photon, polarizing beamsplitter (4), and the photon counting detectors (5). A
supplementary classical channel over which Alice and Bob reconcile their bases states by exchanging non-secure public
information is not shown in the figure.

At the Alice side of the QKD-setup random “letters” from the continuous alphabet are generated. Laser
at this side generates single photons with determined polarization, which is rotated by polarization plate at
a random angle for each photon. Alice knows these random angles for each photon. Generated photons are
transmitted then to Bob via a quantum channel (for instance, a fiber optical link preserving the polarizations of
the photons). Bob for the measurement in an arbitrary basis first rotates polarization of the incident photon by
polarization plate to the random angle value and then performs measurement in the fixed basis. Alice and Bob
reconcile their bases states by exchanging non-secure public information over a classical channel, a telephone
line, for instance.

In the described QKD-setup, the case of multidimensional Hilbert space for the quantum channel input and
output can be, in principle, realized by transmitting of information with the help of several entangled qubits
(photons). This, however, is an experimental difficulty to generate, operate, and measure arbitrary states in
multidimensional spaces, i.e., difficulty to generate and operate multiple entangled photons.

6. CONCLUSIONS

In conclusion, a new QKD-protocol based on the quantum alphabet with infinitive number of “letters” (i.e.,
employing all quantum states of the Alice-Bob quantum system) is proposed. It has a number of advantages in
comparison with other known QKD-protocols.

In two-dimensional case, the critical QBER for our protocol exceeds 25% and can be increased further with
the help of special classical methods of advantage distillation.

The essential qualitative novelty of our QKD-protocol in multidimensional case is that it can work, in principle,
at any imperfections or noise in the quantum channel (either internal or external) and has no any critical bit
error rate value after which the protocol becomes insecure.

For estimation of the Eve’s intervention into the data transmission through a quantum channel we use new
classical mutual Shannon information-based criterion, which adequately reflects the information aspect of the
eavesdropping and can be effectively used for both constructing and analyzing the QKD-protocols.

The only restriction on the Eve’s strategy of eavesdropping is that she measures her probe state before
the bases reconciliation. This restriction does not contradict with the experimental realizations of the QKD-
protocols—Alice and Bob should simply reconcile their bases after the finite decoherence time in the quantum
system. Obviously, such an experimental trick gives no 100% guarantee of the secure transmission, but in the
real QKD-schemes it seems reasonable.
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