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ABSTRACT

The coherent information concept is used to analyze a variety of simple quantum systems. Coherent information
was calculated for the information decay in a two-level atom in the presence of an external resonant field, for the
information exchange between two coupled two-level atoms, and for the information transfer from a two-level atom to
another atom and to a photon field. The coherent information is shown to be equal to zero for all full-measurement
procedures, but it completely retains its original value for quantum duplication. Transmission of information from
one open subsystem to another one in the entire closed system is analyzed to learn quantum information about the
forbidden atomic transition via a dipole active transition of the same atom. It is argued that coherent information
can be used effectively to quantify the information channels in physical systems where quantum coherence plays an
important role.

1. INTRODUCTION

The concept of noisy quantum channel may be used in many information-carrying applications, such as quantum
communication, quantum cryptography, and quantum computers.! Shannon’s theory of information®~® is a purely
classical one and cannot be applied to quantum mechanical systems. Therefore, much recent work has been done
on quantum analogues of the Shannon theory.'' The coherent information introduced in”° is suggested to be
analogous to the concept of mutual information in classical information theory. It is defined by

Ic = Sout - Sea (1)

where S,y is the entropy of the information channel output and S, is the entropy ezchange®® taken from the channel
reservoir. If Souy — Se > 0, then, expressed in qubits, I. describes a binary logarithm of the Hilbert space dimension,
all states of which are transmitted with the probability p = 1 in the limit of infinitely large ergodic ensembles.
Otherwise, we set I, = 0.

The validity of the coherent information concept was proved in,?!° and it was used successfully for quantifying
the resources needed to perform physical tasks. Coherent information is expected to be as universal as its classical
analogue, Shannon information, and it characterizes a quantum information channel regardless of the nature of both
quantum information and quantum noise. In contrast to Shannon information in classical physics, however, coherent
information is expected to play a more essential role in quantum physics. The capacity of information channels in
classical physics can be estimated, in most cases, even without relying on any information theory, at least within
an order of magnitude. This, however, is not feasible in quantum physics and the coherent information concept, or
a similar concept, must be used to quantify the information capacity of the channel. An analysis of the quantum
information potentially available in physical systems is especially important for planning experiments in new fields
of physics, such as quantum computations, quantum communications, and quantum cryptography,l'! where the
coherent information of the quantum channel determines its potential efficiency.

In this paper, we apply the coherent information concept to an analysis of the quantum information exchange
between two systems, which in general case may have essentially different Hilbert spaces. For this purpose, we
must specify the noisy quantum information channel and its corresponding superoperator S, which transforms the
initial state of the first system into the final state of another system. A classification scheme for possible quantum
channels connecting two quantum systems is shown in Fig. 1.12 In addition to the two-time channels shown in
the figure, we consider also their one-time analogues. Two-time quantum channels are widely used in quantum
communications and measurements, whereas one-time quantum channels are appropriate for quantum computing
and quantum teleportation.
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Figure 1. Classification of possible quantum channels connecting two quantum systems. 1 — 1, information
is transmitted from the initial state of the system to its final state (a); 1 — 2, information is transmitted from
subsystem 1 of the system (142) to subsystem 2 of the system (b); 1 = (1 + 2), information is transmitted from
subsystem 1 of the system (1+2) to the whole system (1+2) (c).

The paper is organized as follows. In section 2, we explain key definitions and review superoperator representation
technique, which is used throughout the paper. In the following sections we consider a variety of quantum channels
that correspond to the classification scheme shown in Fig. 1. Section 3 discusses the coherent information transfer
between quantum states of a two-level atom (TLA) in a resonant laser field at two time instants (Fig. 1a). The same
type of quantum channel (1 — 1) can be considered for a system that contains two (or more) subsystems. This case
is analyzed in section 4, using a spinless model of the hydrogen atom as an example. Coherent information transfer
between two different quantum systems is considered in section 5. The analysis includes coherent information transfer
between (i) two unitary coupled TLAs (Fig. 1b), (ii) two TLAs coupled via the measuring procedure (Fig. 1b), (iii)
an arbitrary system and its duplication (Fig. 1c), (iv) a TLA in the free space photon field (Fig. 1b), and (v) two
TLAsS via the free space photon field (Fig. 1b). Finally, section 6 concludes with a summary of our results.

2. KEY DEFINITIONS AND CALCULATION TECHNIQUE
2.1. Notations and superoperator representation technique

This subsection explains key notations and briefly reviews the symbolic superoperator representation technique,'®
which is especially convenient for mathematical treatment of coherent information transmission through a noisy
quantum channel.

The most general symbolic representation of a superoperator is defined by the expression
S=Y su(klo), 2)

where the substitution symbol ® must be replaced by the transforming operator variable and (k| is an arbitrarily
chosen vector basis in Hilbert space H, to which the transformed operators are applied. In order to correctly apply
this transformation to a density matrix, operators 8y must obey the positivity condition for the block operator
S = (511)™ and orthonormalization condition

Tr 8p1 = O, 3)

which provides normalization for all normalized operators g with Tr 5 = 1.

Using symbolic representation (2), one can easily represent the production of superoperators S1, Sz, which consti-
tutes a symbolic representation of the superoperator algebra. For §x; = |k) (| it results to the identity superoperator,
Z, and for §; = |k) (k| dpi—to the quantum reduction superoperator R = > |k) (k| ® |k) (k|. The case of §p = o
represents the trace superoperator Tr®, which is a linear functional in the density matrix space. The correspondence
between the matrix representation S = (Sy,,) of the superoperator S in orthonormalized operator basis é; and its
symbolic representation (2) is given by

8 =S(B) (1) =D Smn (Ul én k) ém )
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and can be easily checked by substituting it in Eq. (2) and comparing with the standard definition of matrix elements
Sén =73, Smném-
2.2. The calculation of coherent information

The entropy exchange in Eq. (1) for the coherent information is defined as
Se = 8(pa), S(p)=—Trplog,p, (5)
where the joint input-output density matrix j, is given, in accordance with,%® by

pa=_ S(pi) (psl) ® 153) (sl - (6)
ij

Here |p;) = ﬁil,{4 |¢) are the transformed eigenvectors of the input density matrix g, = Y. p;|i) (i|, bar symbol

stands for complex conjugation, and S is the channel input-output superoperator, so that the output density matrix
Pout = Spin. Using superoperator representation (2) within the above defined eigen basis |i), the density matrix (6)

takes the form:
b= (p;pj)"* 35 ® 5} (Bl )
ij

where operators §;; represent the states of the output. Both the input and output marginal density matrices are
given by the trace over the corresponding complementary system: pous = TrinPas, Pin = TToutPa- Finally, the coherent
information (1) can be calculated, keeping in mind that Sous = S (Pout)-

2.2.1. Two-time coherent information for two quantum systems

For the coherent information transfer between two quantum systems through the quantum channels shown in Figs
1b,e (1 = 2 or 1 = (1 + 2)), the initial joint density matrix must be taken in the product form pi42 = pin ® P2,
where pi, = p1 and ps are the initial marginal density matrices, the first one being an input. For the 1 = 2 quantum
channel, the output is the state of the second system, since a transformation on these two systems is made and a
certain amount of information is transmitted into the second system from the initial state of the first one.

The dynamical evolution of the joint (1+2) system is given by a superoperator S+ and the corresponding channel
transformation superoperator, which converts pgout = Spin, can be written as

S = Tr; $142(0 ® p2),

where the trace is taken over the final state of the first system. The transformation is described in terms of Eq. (2)
for the joint system as

S= 3 3 (nl8kmin In) (s 22 ) (Kl @ ), ®)

kEslx n

where the product basis |k) |) is used and indexes k, & stand for the first and second quantum systems, respectively.
The operator coefficients 3z in Eq. (2) now take the form:

S =33 (0l dwar In) (x] 22 |) (9)

KA n

Superoperator S depends on both the dynamical transformation S;49 and the initial state po, and couples the initial
state of the first system with the final state of the second system.
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2.2.2. One-time coherent information

One-time information quantities can be easily calculated if the corresponding joint density matrix is known. In
the case of a single system, the corresponding channel is described by the identity superoperator Z. For the joint
input-output density matrix (6), we get a pure state po = ), |ps) |pi) 2_; (pj| (pj| and then calculate the entropy
exchange S, = 0 and the coherent information I, = S,y = Sin. In the case of two systems, the input-output density
matrix is the joint density matrix p;42, and the corresponding coherent information in system 2 on system 1 at time
tis I.(t) = S[p2(t)] — S[P1+2(¢)]- In the case of unitary dynamics and a pure initial state of the second system, all
initial eigenstates |i) of the first system transform into the corresponding orthogonal set ¥;(¢) of the (1+2) system,
so that the joint entropy is time-independent and the coherent information yields I..(t) = S[p2(t)] — S[p1(0)]. If the
initial state of the first system is also a pure state, we get simply I.(t) = S[p2(t)]. For the TLA case, this simply
yields I, = 1 qubit, if a maximally entangled state of two-atom qubits is achieved.

3. TLA IN A RESONANT LASER FIELD

In this section, we discuss the coherent information transfer between the quantum states of a TLA in a resonant laser
field at two time instants (Fig. 1a). Such quantum channel with pure dephasing in the absence of an external field
was considered in.® In a more general case, coherent information, based on the joint input-output density matrix (6),
can be readily calculated by using the matrix representation technique for the relaxation dynamics superoperator.
An interesting question is how the coherent information depends on the applied resonance field.

The field changes the relaxation rates of the TLA. These rates are presented with the real parts of the eigenvalues
Ar of the dynamical Liouvillian £ = L, + Lg of the TLA, where £, and Lg stand for the relaxation and field
interaction Liouvillians. For simplicity, we will consider here relaxation caused only by pure dephasing, combined
with the laser field interaction. The corresponding Liouvillian matrix in the basis of éy = {I, 73, 61,52} reads

0 0 0 0
o o o @

L=l0 o -r o |’ (10)
0 -Q 0 -T

where I' is the pure dephasing rate, () is the Rabi frequency, and 7, 62, 3 are the Pauli matrices. The eigenvalues
of the matrix (10) can be readily calculated and are given by

Ax = {0, -T, —(T + VT2 — 402)/2, —(T — /T2 — 402)/2}.

These values are affected by the resonant laser field with respect to the unperturbed values 0, I, which also affects
the resonant fluorescence spectrum of the TLA. At Q > I'/2 it results in so-called Mollow-triplet structure, centered
at the transition frequency, which has been predicted theoretically!® and subsequently confirmed experimentally.!”

From the information point of view, the resonant laser field might reduce the coherent information decay rate
and, therefore, lead to the increase of information, although this information gain could intuitively be expected only
from the laser-induced reduction of the relaxation rates of the relaxation superoperator £, itself.18-21

Calculating the matrix of the evolution superoperator S = exp(Lt) and using its corresponding representation
(2), the joint density matrix may be calculated analytically (6). Then (with the help of Eqs (5), (1)), the coherent
information left in the TLA’s state at time ¢ may be calculated about its initial state. This state is chosen in the
form of the maximum entropy density matrix gy = I/2. The results of our calculations are presented in Fig. 2. They
show the typical threshold-type dependence of the coherent information versus time, which is determined by the
loss of coherence in the system. Also, the coherent information does not increase with an increase of the laser field
intensity, as might be expected. The coherent information even decreases as the Rabi frequency increases.

In addition, the results show a singularity in the first derivative of the coherent information dependence at time
t = 0, which is a characteristic feature of the starting point of the decay of coherent quantum information. Initially,
the input-output density matrix (6) of the TLA is a pure state p, = Pt with the input-output wave function
¥ = 3" ./pili)|i). Its eigenvalues A and the probabilities of the corresponding eigenstates are all equal to zero,
except for the eigenstate corresponding to ¥. Due to the singularity of the entropy function — > Ax log A at Ax =0
the derivative of the corresponding exchange entropy also shows a logarithmic singularity.
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Figure 2. The coherent information transmitted between the states of the TLA at two time instants, ¢t = 0 and
t > 0, versus time I't and the Rabi frequency Q/T" (both are dimensionless).

Another interesting feature of coherent information is its dependence on the initial (input) state pi,. If it were
possible, g;, might be chosen in the form of the eigenoperator

4
Pin = Z Ikmin)[ é
=1

of the Liouvillian, where |kmin) is the eigenvector corresponding to the minimum value [Re)g| > 0 of the matrix L.
Yet the vector |kmin) is equal to {0, (I' + vI'? — 4Q2)/2Q,0, 1}, which corresponds to the linear space of operators
with zero trace due to the zero value of the first component. Therefore, the coherent information decay rate cannot
be reduced by reducing the corresponding decay of atomic coherence.

4. COHERENT INFORMATION TRANSFER BETWEEN TWO SUBSYSTEMS OF
THE SAME QUANTUM SYSTEM

In this section we investigate the quantum channel (1 — 1, Fig. 1a) between two open subsystems A and B of a
closed system A + B having a common Hilbert space sp (H4, Hp), where H4 and Hp are the Hilbert subspaces of
the subsystems A and B, respectively.

In classical information theory, this situation corresponds to the transmission of part A C X of the values of an
input random variable z € X. The situation where a receiver receives no message is also informative and means that
z belongs to the supplement of A, z € A. It can be described by the choice transformation C = P4 + Py(1 — Py),
where P, is the projection operator from X onto the subset A, P4z = z for £ € A and Paz = @ (empty set) for
z € A, P, is the projection from X onto an independent single-point set Xy, and Poz = X,. This transformation
corresponds to the classical reduction channel, resulting in information loss only if A is not a single point. If 4 is a
single point, we are able to get a maximum of one bit of information, for A can provide another point of the bit, so
that for an input bit we have no loss of information.

In quantum mechanics, the corresponding reduction channel is represented as the choice superoperator

C=Ps0Ps+0)(0]Tr(1 - Ps) ® (1 - Py), (11)

where state |0) is a quantum analogue of the classical single-point set, which is separate from all other states. Eq.
(11) defines a positive and trace-preserving transformation, which can appropriately describe coherent information
transfer between subsets of the entire system. The last term in Eq. (11) represents the total norm preservation, if
all the states outside the output B-set are included. In our case, these states are included in the incoherent |0) (0]
form, which in contrast to the classical one-bit analogue of a TLA yields no coherent information due to the complete
destruction of the coherence.
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Figure 3. A spinless model of the hydrogen atom. The information channel is made of the input forbidden
nlm — n/l'm’ transition 100-200 and the output dipole active 100-210 transition.

Considering the coherent information transmitted from part A to part B of the system, which evolves in time,
we deal with the channel superoperator

Sap =CpSo(t)Ca, So(t)=U@) U (2) (12)

with U(t) being the time evolution unitary operator. Here the input choice superoperator C4 is shown just to define
the total channel superoperator, regardless of the input density matrix. Otherwise, C4 is already accounted in the
input density matrix pin, defined as the operator in the corresponding subspace H4 of the total Hilbert space H.

Let us assume that the dynamical evolution of the system is determined and the Bohr frequencies wy and the
corresponding eigenstates |k) are found. Then, representing the projectors in terms of the corresponding input |1;)
and output |¢,,) wave functions, Eq. (12) gives the specified time evolution form

Sap(t) = Y 8w @) +10) (0] Y (@m () (W () lom ) | (Wil @ lthw),
WeA m¢B

sw@®)= Y (emli(®) W (®) lom) lom) (@ml, (13)

mm'€EB

[ () = 3o e (ko) |k) -

Let us consider the case of the orthogonal subsets of input/output wave functions, which is of special interest. Then,
if there is only one common state |@) in the sets |;), |¢m) and U(to) = 1 holds for some tp, we get

Sap(to) =) (81 @ 8) (¢] +10) (O D (¢m|® lom),
PmEd

which means that the quantum system is reduced into a classical bit of the states |¢) and |0) and no coherent
information is stored in the subsystem B. Nevertheless, if the eigenstates |k) of U(t) do not coincide with the
input/output states |t;), |om) the coherent information will increase with the time evolution. Hence, the information
capacity of the channel is determined by quantum coupling of the input and output.

To illustrate the coherent information transfer through the quantum channel considered in this section, let us
analyze a typical intra-atomic channel between two two-level systems formed of two pairs of orthogonal states
A = {|v0), |¥1)} and B = {|vo), |12)} of the same atom. A spinless model of the hydrogen atom could serve as such
a system (Fig. 3): 1, is the ground s-state with n =1, 1), o are the s-state with [ = 0, m = 0 and p-state with [ =1,
m = 0 of the first excited state with n = 2, respectively.

In the absence of an external field, this quantum channel transmits no coherent information, as the I =0, m =0
and | = 1, m = 0 states are uncoupled. In the presence of an external electric field applied along the Z-axis,
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the considered two out of four initially degenerated states with n = 2 are split, due to the Stark shift into the
new eigenstates |1) = (|¢1) + |¥2))/ V2, |2) = (|¥1) — |¥2))/v/2. The input I = 0 state oscillates with the Stark shift
frequency: [¢1(t)) = cos(wst) |11) + sin(wst) |1P2). Therefore, due to the applied electric field, the input state becomes
coupled to the output state, which carries the coherent information.

For our model, Eq. (13) presents the 3x;-operators in the form of a 3 X 3-matrix, where the third column and row
introduce the phantom “vacuum” state |0):

1 00 0 sinwst O
Sm:.=]1 0 0 0 |, &= 0 0 o1,
0 0O 0 0 0 )
0 00 0 0 0
S1=| sinwgt 0 0 |, 8= 0 sin?w,t 0
0 00 0 0 cos? w,t

Zero values of 312, 891 correspond to the absence of coherent information at ¢ = 0 or to the absence of coupling.
Choosing the input matrix in the maximum entropy form pi, = I/2, we get the corresponding joint input-output
matrix in the form

=3

Q

I
o o oo o
l o o co o

1-22

\ 0 —5—

where z = sin w,t and the output density matrix poys is diagonal with the diagonal elements 1/2, 22/2, and (1—22)/2.

o onR © omNlH
© oo oo o
© oo oo o©
o omn|Y,oons

Calculating non-zero eigenvalues (1 & z2)/2 of p, and the entropies Sout, Sa, We get the coherent information
I, = [(1 +2%)logy (1 + %) — 2® log, (2®)] /2.

This function is positive except for z = 0, where the coherent information is equal to zero, and its maximum is equal
to 1 qubit at £ = +1, e.g., for the precession angle wst = £m/2. Thus coherent information on the state of the
forbidden transition is available, in principle, from a dipole transition via Stark coupling. Its time-averaged value is
(I.) = 0.46 qubit.

This forbidden transition was discussed in??23 as a potential source of information on spatial symmetry breaking
caused by the weak neutral current.?#?> For example, if I, = 0, only the incoherent impact of the forbidden
transition (by means of the ground state population ng) remains and provides a classical-type of information on
the interactions that cannot be observed directly. In this case, only one parameter—population—can be potentially
measured, while exact knowledge of the phase of the transition demands I, = 1.

5. COHERENT INFORMATION TRANSFER BETWEEN TWO QUANTUM SYSTEMS

In recent years, a few results have been published related to coherent information transfer in a system of two TLAs,
including discussion of the problem from the entanglement measure viewpoint?® and the “eavesdropping problem” .27
A number of different experiments have been proposed to study controlled entanglement between two atoms.28:2
From the informational point of view, the coherent information transmitted in the system of two TLAs connected by
a quantum channel depends both on the specific quantum channel transformation and the initial states of the TLAs.
For the latter, it seems reasonable to assume that they can be represented by the product of the independent states
of each TLA: P1+2 = Pin ® Pa.

In this section, we present a systematic treatment of the coherent information transfer between two different
quantum systems. The analysis includes coherent information transfer between (i) two unitary coupled TLAs (sub-
section 5.1), (ii) two TLAs coupled via the measuring procedure (subsection 5.2), (iii) an arbitrary system and its
duplicate (subsection 5.3), (iv) a TLA and the free space photon field (subsection 5.4), and (v) two TLAs coupled
via the free space photon field (subsection 5.5).
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5.1. Two unitary coupled TLAs

Let us first examine a deterministic noiseless quantum channel connecting two TLAs (Fig. 1b). Such a channel
can be described by the unitary two-TLA transformation, which is defined by the matrix elements Ug;p'i# with
k,i,k',i’ = 1,2. Then, the channel transformation superoperator S describing the transformation pin — fout = P4
can be written in terms of the substitution symbol (see Eq. (2)), with operators 8 = ) v Skl v |u) (v|, represented
with the matrix elements of S (in accordance with Eqs (4), (9)), in the following form:

Sk’,lﬂ’ = z p2aﬁUmu,kaU;w,lﬁ‘ (14)

maf

The relation Tr8x = 3, Ski,up = Om is valid here and ensures the correct normalization condition, whereas the
positivity of the block matrix

. 811 512

Sp)=| .

(8u) ( S21 S22 )

For the no-entanglement transformation U = U; ® Us, Egs (2), (14) yield S = p4Tr ®, which means that the
initial state p; of the first TLA transfers into the final state, which is not entangled with the state ) = UspoUy of
the second TLA.

We can simplify Eq. (14) by considering a pure state po, so that together with an arbitrary choice of no-
entanglement transformation U, it seems reasonable to consider a special case of the pure state: paag = 0ag0aag-
Keeping also in mind that Sk . is linear on the density matrix p, and the coherent information I, is a convex
function of S,!° Eq. (14) simplifies to

ensures the positivity of S.

Skl,l“’ = Z Umu,kao U:nv,lao’ (15)
m

which means that the quantum channel is described only by the unitary transformation U. Here the summation is
taken over only the states |m) of the first TLA after the coupling transformation.

The coherent information transmitted in systems of two unitary coupled TLAs with piy, = I/2 and (P2)1p =
V/(P2)1; [1 = ($2)1,] is shown in Fig. 4. A convex function of j; is shown, which has the maximum on the border,
p11 = (P2);; = 0,1. Asin the case of a single TLA, the behavior of the coherent information preserves the typical
threshold-type dependency on the coupling angle, which determines the degree of the coherent coupling of two TLAs
with respect to the independent fluctuations of the second TLA.

5.2. Two TLASs coupled via the measuring procedure

Here we will discuss a specific type of quantum channel connecting two TLAs,3® where the superoperator S is defined
by the measuring procedure, which implements a different approach to the quantum information®! called measured
information.

We start with a channel formed of two identical two-level systems. In terms of wave function, the corresponding
full measurement transformation of the first TLA state is defined as

YRp Y ai|i)|6i), ai=(dileh). (16)

This transformation provides full entanglement of some basis states |@;), which do not depend on the initial state ¢
of the second TLA. The latter serves as a measuring device, yet fully preserves information on the basis states of the
first system state ¥ = ) a; |¢;). Eq. (16), being a deterministic transformation of the wave function, is neither linear
nor unitary transformation with respect to ¢ and, therefore, cannot represent a true deterministic transformation.
The corresponding representation in terms of the two-TLA density matrices has the form:

Prz = D> (il (5] hra |85) |6:) 1) |63 (il (il - (17)
i g
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Figure 4. The coherent information transmitted between two unitary coupled TLAs versus population p;; of the
diagonal initial density matrix of the second TLA and the coupling precession angle Qf.

This representation is linear on p;, and satisfies the standard conditions of physical feasibility,'%32 i.e completely
positive and trace preserving. This matrix is in the form of ) p; |#:) |#:) (#i] (#:], so that S(p12) = S(p2). Due to
the classical nature of the information represented here only with the classical indexes ¢ and in accordance with the
equations of section 2, the single-instant coherent information is zero.

In the case of a two-time channel, the superoperator for the quantum channel connecting two TLAs can be readily
derived from Eq. (2) with 8x = |¢r) (k| Ok, (k| = (@k|, and |k) — |¢x). After calculating the trace over the first
TLA and replacing p12 with the substitution symbol ®, the equation takes the form:

M= BTnE . (18)
k

Here P, = 1¢k) (¢r| are the orthogonal projectors representing the eigenstates of the “pointer” variable of the second
TLA and Ej = |¢x) (¢r| is the orthogonal expansion of the unit (orthogonal map) formed of the same projectors.
This orthogonal map determines here the quantum-to-classical reduction transformation TriEx ® = (¢x| ©|¢s),
which represents the procedure of getting classical information k from the first system. Applying the transformation
(18) to pin and using Eq. (6) for the respective output and input-output density matrices, we get

Pout = YDk |6x) (Brl, o= D Br |dx) Imk) (il (B, (19)
k k

where pr = (dk| fin |@x) = X_; Pil (#x |i) |* are the eigenvalues of the reduced density matrix and |m) =
> V/Pi/Dr (¢x |i) [¢) are the normalized modified input states coupled with the output states |@) after the measure-
ment procedure. It is important to note (as it follows from Eq. (19)) that there is no coherent information in the
system because vectors |¢y) are orthogonal and therefore the entropies of the density matrices (19) are obviously the
same. Conversely, the measured information introduced in3' is not equal to zero in this case.

We can easily generalize our result for a more general case of the quantum channel, when the second system
has a different structure from the first and, therefore, they occupy different Hilbert spaces. This difference leads
to the replacement of the basis states |¢;) of the second system in our previous results with another orthogonal set
|@s) = V |#;), where V is an isometric transformation from the Hilbert state H; of the first system to the different
Hilbert space Hy of the second system. After simple straightforward calculations, the final result is the same—there
is no coherent information transmitted through the quantum channel. This result is a natural feature of coherent
information, in contrast to other information approaches (see, for example Ref.3!).
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It is interesting to discuss more general measuring-type transformations, for instance, the indirect (generalized)
measurement procedure. This procedure was first applied to the problems of optimal quantum detection and mea-
surement in®3 and then, in a form of non-orthogonal expansion of unit £(d)), in®* (£(d)) is equivalent to the positive
operator-valued measure, POVM, used in the semiclassical version of quantum information and measurement the-
ory!1:35:36) ' This indirect measuring transformation results from averaging a direct measuring transformation applied,
not to the system of interest, but to its combination with an auxiliary independent system. The indirect-measurement
superoperator in the general form can be written as

M=Y B Té0, (20)

q

where 13q are the arbitrary orthogonal projectors and 3,, is the general-type non-orthogonal expansion of the unit
in H space (POVM). Note that éq = |q) (¢q| is a specific “pure” type of POVM, first used in quantum detection
and estimation theory.3® The latter describes the full measurement in H ® H, for the singular choice of the initial
auxiliary system density matrix pg, = dpo0.-

The information transfer from the initial density matrix to the final output state is represented in Eq. (20) via the
coupling provided by indexes g. Because the number N, of g values can be greater than Dim H, it seems reasonable
to suggest that some output coherent information is left about the input state. The corresponding output and
input-output density matrices are given by

Pout = Zﬁqﬁ’q’ Pa = Z\/pipj (]‘ ‘ch |") pq ® ﬁ) (3'7 (21)
q

qij

where p, = Tr gqﬁin are the state probabilities given by the indirect measurement.

In the case of full indirect measurement, it can be easily inferred theoretically or confirmed by numerical calcula-
tions for particular examples that no coherent information is available. The proof is based on the quantum analogue’
of the classical data processing theorem and the above discussed result on a full direct measurement. Therefore, in
order to get non-zero coherent information, a class of incomplete (soft) measurements must be implemented, which
are subject to more detailed quantum information analyzis.

5.3. Quantum duplication procedure

In the previous subsection, we demonstrated that the classical-type measuring procedure defined by the transfor-
mation (17) completely destroys the coherent information transmitted through the quantum channel. Here we will
consider a modified transformation for the quantum channel shown in Fig. 1c, which preserves the coherent informa-
tion:

Pr2 = pro =) (&l Trapra ;) 16i) 1) (851 (51 -

ij

In this equation off-diagonal matrix elements of the input density matrix §; = pi, are taken into account, which
preserves the phase connections between different ¢;.

For the initial density matrix of a product type pin ® p2, in terms of g, — p}, transformation from H to H ® H,
the corresponding superoperator has the form:

Q=" 16:) |6:) (831 (#] (#s] ©1¢5) (22)

ij

This superoperator defines the coherent measuring transformation, in contrast to the incoherent transformation
discussed in.3! The coherent measuring transformation converts pi, into po-independent state

Pout = Pra = D (@il Bin |65) 16} 13) (851 (&5, (23)
ij
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which results in duplication of the input eigenstates ¢; into the same states of the pointer variable k = York|ok) (D]
Pure states of the input are transformed into the pure states of the joint (1+2)-system by doubling the pointer states:

P — Z (Pi |[9) i) |d3) -

This mapping is similar to the mapping given by Eq. (16). Of course, only the input states 1 equal to the chosen
pointer basis states ¢ are duplicated without distortion because it is impossible to transmit non-orthogonal states
using only orthogonal ones. The entropy of the output state with a density matrix (23) having the same matrix
elements as fin, is evidently the same as the input state, Sout = Sin = S[pin], due to the preservation of the coherence
of all pure input states.

For the joint input-output states, the transformation (22) yields the corresponding density matrix (6) in HQ HQ H
space:

Pa = |k} 16k) (D] (el @/ B Ixk) (xals (24)
K

where P, |xx) are the same as above, providing an expansion of the input density matrix in the form piy, =
>k Pk |xk) (xk|- Taking into account that the first tensor product term in Eq. (24) is a set of transition projectors
Py, Po Py = 01 Prn, we can apply easily proven algebraic rules valid for a scalar function f:

FQ Pu®Ru)=) Puof(Ru,
* *

where R = (Ru) is the block matrix and Tr £(3°,, Pu ® Ri) = Tr f(R). Here R = (vBeBr Ixx) (xal), and it is simply

1)) (It with ||x))x; = v/PrXki» & vector in the H ® H space. All eigenvalues Ay of this matrix are equal to zero,
except one value corresponding to the eigenvector ||x)).

Calculation of the exchange entropy gives Se = 0, and, therefore, I, = S;,. Consequently, the coherent duplication
does not reduce the input information transmitted through the 1—(1+2) channel, nor does it matter whether the
register k is compatible with the input density matrix, [k, 4in] = 0, or not.

If the channel is reduced to the one shown in Fig. 1b and discussed in the previous subsection, by taking in Eq.
(23) trace either over the first or the second system, we evidently come to the measurement procedure discussed in
subsection 5.2. As a result, we can conclude that the coherent information is strictly associated with the joint system
but not with its subsystems. This natural property could be used in quantum error correction algorithms®? or for
producing stable entangled states.®®

5.4. TLA-to-vacuum field channel

In this subsection, we analyze the quantum channel between a TLA and a vacuum electromagnetic field (Fig. 1b),
which is an extension of the TLA in an external laser field, as considered in section 3.

For this analysis, we will use a reduced model of the field, which is based on the reduction of the Hilbert space
of the field in the Fock representation (Fig. 5). The problem, therefore, is reduced to that of the interaction of a
two-level system with continuous multi-mode oscillator systems,?® a specific case of which is the interaction of an
atom with the free photon field. However, to analyze the information in the system (atom-+field), we do not need
to consider the specific dependence of the wave function 1o (k, A) of the field photon on the wave vector (including
polarization), because only its total probability and phase are significant.

In the basis of the free atomic and field states for the vacuum’s initial state ap = 0, we get from Eq. (15)

— *
Skt,ur = Z U, koUmw 10
m

Greek letters are used to distinguish the photon field indexes, which in the general case include both the number
of photons and their space or momentum coordinates. Matrix elements of this superoperator calculated via the
atom-to-field unitary evolution matrix Uy, ko coefficients (Table 1) are shown in Table 2.
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Figure 5. Structure of the joint Hilbert space of the (atom+field) system. For the vacuum initial field state, both
atomic states and only two Fock states of the field (|0) and |1)) are involved in the dynamics of the joint system
(atom+field). The dynamics is entirely defined by just two states, |0), |1),, and |1}, |0), which are described by
Yo (k, A) and c1, respectively.

Table 1. Unitary (atom+field) to (atom-+field) transformation Up, ko for the vacuum initial photon field state,
where indexes m, k stand for atomic quanta and u,a—for the number of photons. Long dash symbol stays for the
elements not involved into the calculated terms Sg;,,, (Table 2).

s 00 01 10 11
ka

00 1 0 0 0
a1 -  —  — —
10 0 ’l/)o(k, /\) C1 0
1mn - - = —

Table 2. Atom-to-field transformation Sy ., which defines |k) (I| = |u) (v| superoperator transformation. Indexes
k,l stand for atomic quanta and p, v—for the number of photons.

v 00 01 10 11
Kl

00 1 0 0 0

01 0 0 Yo(k, A) 0

10 0 F(k, ) 0 0

11 el 0 0 o (k, Ao (K', X')
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The choice of 1y(k, \) as a basis for the photon field*° reduces the matrix of operator S, to the non-operator
matrix transformation, which in terms of §5; matrices has the form:

. 10 R —e )12
S”:(o 0)’ s”=<g G0 ),

L 0 0 . (e 0
So1 = (l_e_.’,t)l/2 WE S22 = 0 1—e-t |

where |c1|> = exp(—yt) describes the population decay of the totally populated initial excited state of the atom
and [ Y |vo(k,A)|?dk = 1 — exp(—~t) is the probability a photon will be detected. From Eq. (25), it follows that
the structure of the photon field plays no role, and the transmitted information defined by the input-output density
matrix depends only on the photon emission probability by time t. The reduction of the photon field (only the photon
numbers p, v = 0,1 were taken into account) leads to the conclusion that the photon states also are equivalent to
those of a two-level system.

(25)

Applying the transformation (25) to the input atom density matrix

fin = P11 P12
" p2 1—pu1 )’

restricted to the real off-diagonal matrix elements, we get the output density matrix

pout = p11 + 0226_7: , p2 (1 - ~‘3_'Yt)1/2
p12 (1— ™) / pa2(1— e )

.and for p;3 = 0 the respective input-output density matrix

p11 0 0 [pr1p22(1— 6_7t)]1/2
R 0 p22e” 7 | 0 0

Po = 0 0 |0 0
[p11p22(1 - e_7t)]1/2 0 0 p2(l—e™)

For ¢t — oo this expression yields a pure atom-photon state, which converts incoherent fluctuations of the atomic
states, forming the incoherent ensemble, to equivalent coherent fluctuations of the photon states. The corresponding
eigenvalues are A, = {0, 0,1—pa2 exp(—~t), p22 exp(—7t) }. Non-zero values are equal to the probabilities of the atomic
states at time ¢. For the output (photon) density matrix poyy, the eigenvalues are Agyy = {pa22[1 —exp(—7t)], 1—p22[1—
exp(—~t)]}, which are the probability that a photon will be emitted or not. These sets of eigenvalues determine the
eigen probabilities of the joint input-output and marginal output matrices. The coherent information, defined by the
difference of the corresponding entropies, then takes the form:

I. = zp,, logy(zpaz) — (1 — pa2 + Tp2z) logy[l — (1 — z)pa]+ (26)
(1 = zp22) logy (1 — zp22) — (1 — ) p22 logy (p22 — Tp22),

where £ = exp(—~t). This formula is valid for I, > 0, otherwise, I, = 0. The corresponding critical point is
exp(—7t) = 1/2, the time when the probability 1 — paa[1 — exp(—~t)] of finding no photon is equal to the population
of the lower atomic state 1 — pag exp(—7t).

The results for calculating the coherent information are shown in Fig. 6 for two specific cases: p;2 = 0 (Fig. 6a)
and p11 = 1/2, 0 < p12 < 1/2 (Fig. 6b). One can see from Fig. 6a that the coherent information is symmetrical
with respect to the population p;; around the symmetry point p;; = 1/2. Increasing the excited state population
p22 = 1 — p11 and the corresponding photon emission yield does not increase the coherent information, because of
the reduction of the source entropy, which determines the potential maximum value of the coherent information. For
the same reason, the coherent information decreases when there is a non-zero coherent contribution to the initial
maximum entropy atom state and completely vanishes for the pure coherent initial state (Fig. 6b).
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Figure 6. The coherent information transmitted in the atom-to-field quantum channel versus the dimensionless
time ¢ and input atomic density matrix, which is taken either diagonal with the ground state matrix element p1y
(a) or as the sum of I/2 and the real (“cosine-type”) coherent contribution of the off-diagonal elements p1261 (b).

In accordance with section 2 and because of the purity of the initial field state, one-time information is equal to
the difference of the entropies of the photon field only, represented by gout, and the initial atomic state, represented
by pin. For a pure initial state, expressed in the form of the excited atom state |2), and for 0 < ¢t < oo, we always
get non-zero information I, = —zlogy, z — (1 — z)log, (1 — z) that yields 1 qubit for z = 1/2, when the excited state
population is equal to the probability a photon will be emitted.

5.5. The transmission of coherent information between two atoms via a free space field

In this subsection, we will consider the quantum channel when information is transmitted from one atom to another
via the free space field (Fig. 1b). Suppose that the second atom is initially in the ground state. In addition, we
will restrict ourselves here to the long time scale approximation, in which the effects of the discrete nature of the
retarding electromagnetic interaction are neglected.41~#* Under such restrictions and approximations we have the
Dicke problem,*> for which the well-known solution for the atomic state in the form of two decaying symmetric
and antisymmetric Dicke states |s) = (|1)]2) +2) |1))/v/2, |a) = (J1)|2) —|2) |1))/v/2 and the stable vacuum state
|0) = |1) |]1) can be written as:

cs(t) = c5(0) exp[—(7s/2 + iA)E],
ca(t) = ca(0) exp[—(7a/2 — iA)t], (27)
co(t) = co(0) + [ca(0)2 + ca(0)? — co(£)? — ca(t)?]/? D).

Here ¢y (t) is the amplitude of the stable vacuum component |1) |1), which has an incoherent contribution due to the
spontaneous radiation transitions from the excited two-atomic states, £(t) is the homogeneously distributed random
phase, 7,,, and A are their decay rate and coupling shift, respectively, and ¢, , are the amplitudes of the Dicke states.

In terms of the products of the individual atomic states |i) |5} for the corresponding initial amplitudes ¢;2(0) = 0,
¢22(0) = 0 the system’s dynamics is described, according to the Dicke dynamics (27), by the following equations:

c11(t) = e11(0) + F()e¥W e (0), a1 (t) = fo(t)e (0),
c12(t) = fa(t)c12(0), ca2(t) =0,
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() = {1 - [exp(=st) + exp(—yat)]/2}' /2,
fs(t) = {exp[—(7s/2 + iA)t] + exp[— (74 /2 — iA)t]}/2,
fa(t) = {exp[~(7s/2 + iA)t] — exp[—(1a/2 — iA)¢]} /2.

Applying these formulas to the input operators cx;(0)c;; (0) |k) (/| of the first atom and then averaging the output
over the final states of the first atom and the field fluctuations (the latter is represented here only with £(¢)), we get
the symbolic channel superoperator transformation 5(1)(0) = 5 (t) = S(¢)5()(0) and corresponding §x; operators
in the form:

S = 1A+ [f®)?+If®F] 1) (2lo2) A +|f®P12) (2l [2) 2|
+£2(8)12) 2l 0[1) (A +£7() 1) (1] ©]2) (2,

§u=((1) 8), §12=(8 f:o(t)-)’ (28)
gzl:(fﬂ::) 8) 322=(f(t)2+0|f8(t)'2 Ifa?t)l2)'

To further elucidate this problem, let us now discuss the case of two identical atoms having parallel dipole
moments aligned perpendicular to the vector connecting the atoms. Here only two dimensionless parameters are
essential: dimensionless time, ¢, where + is the free atom’s decay rate, and dimensionless distance, ¢ = ko R, where
R is the interatomic distance and kg is the wave vector at the atomic frequency. Then, the dimensionless two-atomic
decay rates and the short distance dipole-dipole shift are given by?2938:44:

Ysa/y=1%£g and A/y= (3/4)/9037

respectively, with g = (3/2)(¢ ! sinp + 92 cosp — ¢~ 3 sin ).

The coherent information may be calculated as previously described in subsection 5.4 by replacing exp(—~t) with
f(®)?2 +|fs(t)|? in Eq. (25). Then, the operators 3x; in Eq. (25) become similar to the corresponding operators in
Eq. (28). The coherent information is given by the same Eq. (26) with = = f(¢)2 + |fs(¢)|?, which, however, now has
(in contrast with a single-atom case considered in 5.4) new qualitative features arising from the specific oscillatory
dependence of |fs,4(t)|? on the interatomic distance ¢.

If there were no oscillations from the quasi-electrostatic dipole-dipole coupling, i.e. as in the case of A = 0, the
coherent information would always be equal to zero, because the threshold z < 0.5 would not be achieved. Parameter
(1—=z) corresponds to the population of the excited state of the second atom for the initial state |2) of the first atom,
and for the optimal value pe2 = 1/2 of its initial population (from the information point of view), we have 1—z < 1/4
and = > 3/4. Oscillations in |f,(t)|? lead to the interference between the two decaying Dicke components, so that
the maximum of the population ny = 1 — z goes to the larger values, maximally up to ns = 1, and the coherent
information becomes a non-zero value.

Functions ny(p,vt) and I.(p,~t), calculated with Eq. (26) are shown in Fig. 7. For the considered geometry, they
serve as the universal measures for a system of two atoms independent of their frequency or dipole moments.

As can be seen from Fig. 7a, the population decreases rapidly versus time because of the decay of the short-lived
Dicke component. Both the population and the coherent information (Fig. 7b) show strong oscillations at smaller
interatomic distances ¢. At ¢ — 0 the long-lived Dicke state yields an essential population even at infinitely long
times, but it does not yield any coherent information after the total decay of the other short-lived Dicke state.

6. CONCLUSIONS

In this paper, we have shown that the coherent information concept can be used effectively to quantify the interaction
between two real quantum systems, which in general case may have essentially different Hilbert spaces, and to
elucidate the role of quantum coherence specific for the joint system.

For a TLA in a resonant laser field, coherent information in the system does not increase as the intensity of the
external field increases, unless the external field modifies the relaxation parameters.
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Figure 7. Excited state population of the second atom (a) and the coherent information (b) in a system of two atoms
interacting via the free space field versus time ¢ and the interatomic distance ¢ = woR/c (both are dimensionless).
The input density matrix is diagonal with the ground state matrix element pgg = 1/2.

As an example of information transmission between the subsystems of a whole system, the hydrogen atom was
considered. The coherent information in the atom was shown to transfer from the forbidden atomic transition to the
dipole active transition in an external electric field, due to coupling through Stark splitting.

For two unitary coupled TLAs, the maximum value I, = 1 qubit of the coherent information was shown to be
achieved for a complete unitary entanglement of two TLAs and I, = 0, for any kind of measuring procedure discussed
in subsection 5.2.

For the information exchange between a TLA and a free-space vacuum photon field via spontaneous emission,
the coherent information was shown to reach a non-zero value at the threshold point of the decay exponent exp(—~t)
equal to 1/2, when the probability of finding no photon is equal to the population of the lower atomic state. At its
maximum, the coherent information can reach the value of I, = 1 qubit.

For the information transfer between two atoms via vacuum field, when the atoms are located at a distance of the
order of their transition wavelength, the coherent information was shown to be a non-zero value, only because of the
coherent oscillations of the Dicke states, which originate from the dipole-to-dipole short distance electrostatic-like
~ 1/R? interaction. In contrast, the semiclassical information received from the quantum detection procedure results
from the population correlations.3®
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