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A quantum-information analysis of how the size and dimensionality of the quantum alphabet affect the
critical error rate of the quantum-key-distributig@KD) protocols is given on an example of two QKD
protocols—the six-state and-state(i.e., a protocol with continuous alphapeines. In the case of a two-
dimensional Hilbert space, it is shown that, under certain assumptions, increasing the number of letters in the
guantum alphabet up to infinity slightly increases the critical error rate. Increasing additionally the dimension-
ality of the Hilbert space leads to a further increase in the critical error rate.
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[. INTRODUCTION the six-state protocol surpasses that of the BB84 protocol
7 Further increasing the critical error rate, as was dis-
cussed in the literatuf@—10Q, is basically connected with an
increase in the dimension of the Hilbert space of the quan-
fum channel.

In the two-dimensional case, there is a commonly ac-
cepted opinion that the six-state protocol has the best effi-
cacy[11] (however, there is no proof of this statement for all
?)ossible eavesdropping strategids this paper, we clarify
whether increasing the number of letters in the alphabet in a
Hilbert space of fixed dimension could improve the QKD
f‘)‘rotocol efficacy or not. In other words, can we surpass the

ix-state protocol efficacy, even in the two-dimensional case,

Since the idea of quantum cryptography was propose
first [1], a number of different quantum-key-distribution
(QKD) protocols implementing it have been suggege].
Despite their diversity, all of them are based on a beautifu
idea employing the basic “no-cloning” principle of quantum
mechanics—the impossibility of copying arbitrary quantum
stateg6]. Thanks to this, an eavesdropper cannot intercept
quantum communication channel without disturbing a trans
mitting message if it contains a set ofcompatible i.e.,
essentially quantum, states not governed by the rules of cla:
sical logic. Moreover, any attempt to obtain any information
;beostjstaggs set of states inevitably disturbs the transmitte ue to an increase in the number of letters, or not?

. his ad ¢ hvsics f In order to answer this question, we introduce a QKD
Keepmg .t Is advantage of quantum physics for CrypFog'protocol that has procedures similar to standard QKD proto-
raphy in mind, any QKD protocol uses messages entirel

d of h et %ols (for instance, the six-state protogobut it employs all
composed of a set of quantum states or a so-caflethtum 5 iy superpositions of orthogonal basis states that form
alphabet that consists of incompatible “letters.” Various

the continuous alphabet. By analogy with the six-state pro-
Eocol, we will call such a protocol the-state protocol. The

v . - %ﬂcacy of thew-state protocol can be calculated as for other
critical error rate that determines the protocol efficiency. By, protocols with the help of a regular information analy-

analyzing distortions in received messages, one can reveal AL based on the calculation of the mutual Shannon informa-

eavesdropping attack, but in order to establish a secure Colj, peryeen different two-partite subsystems of the tripartite
nection, one should also be able to resist such attacks. Therg;cio Alice-Eve-Bolj12]

fore, one of the reasons for developing more QKD protocols
is increasing their critical error rates.

All known QKD protocols[1,3,4 using carriers of infor-
mation with a finite-dimensional Hilbert space are based o
discrete quantum alphabets, i.e., with fixed number of letter

The first QKD protocol proposed in 1984 by Bennett andwe provide a comparative quantum-information analysis of

Erassarc(BBSé}) [1] give_s;)lan example O.f a protocol in :’I"hiCh the six-state aneb-state QKD protocols. The benefits of us-
our quantum incompatible states, setting two mutually non—mg Hilbert spaces with arbitrary dimension in QKD proto-

orthogonal bases, are used. The alphabet of the six-state PrO51s are considered in Sec. IV. We conclude the paper by

tocol [4] is composed_of three mutually nonorthogonal base . . . P
(1001, {(02 D) 210D 2 i a two-  saratang the resuls and discussing the possibiltes of
dimensional Hilbert space, which makes this protocol totally

symmetrical on the Bloch sphere and leads to the fact that Il. SPECIFIC PROPERTIES OF THE «-STATE
information characteristics, namely, the critical error rate, of QKD PROTOCOL

The paper is organized as follows. In Sec. Il, we outline
some specific properties of thestate protocol and give the
basic concept and key mathematical formalism of the com-
atible information in application to the quantum-
nformation analysis of arbitrary QKD protocols. In Sec. lll,

In the following, we assume that before eavesdropping
the Alice-Bob system is described entirely by a totally en-
*Electronic address: sych@comsim1.phys.msu.ru tangled pair of photonglL3].
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In other words, we will analyze the Einstein-Podolsky- 10r
Rosen(EPR) version of QKD protocols, which is similar to
the Ekert version of the BB84 protocfi#t]. Obviously, such 0.8}
a representation of QKD protocols is equivalent to the case
where Alice simply transmits single photons to Bob, without =06}
any source of EPR pairs. S
From a theoretical point of view, the key difference in the ™~ 04
analysis of thew-state protocol and of QKD protocols with
discrete alphabets lies in the calculation of the amount of 02_°-279

information that can be encoded with the help of a continu-
ous alphabet. A natural quantitative measure for the amount

of information is the standard mutual Shannon information 0.0 50 100 150 200
functional of the classical input-outpytAlice-Bob) joint M

probability distributionPg:

FIG. 1. The amount of informatiohper transmission versus the
| aelPag] = SPal + SPg] = S Pagl, @) number of area$! in which the two-d!omensional Hilbert space of
where §P] is the classical Shannon entropy functional for states is split.
the joint, P=P,g, and marginalP=P,, Pg, probability mea-
sures[14]. after the transmission of all messages, they select only that
The specifics of a continuous alphabet is apparent in theart of the messages for which they have used the same
calculation of the joint probability distribution, defined on a information bases.
continuous set of elementary quantum events, which can be In contrast to a discrete alphabet, one cannot perform an
determined by the wave functions or the state vectors of thexact basis reconciliation procedure for thestates protocol,
guantum-information system. Mathematically, a set of el-because one needs to transmit an infinite amount of informa-
ementary events can be chosen by defining a set of positision about a point from the continuum. Therefore, we pro-

operators,E,=|2|(1|, representing a nonorthogonal expan-POse to apply ampproximatebases reconciliation procedure

sion of the unit operatof15] or the positive operator-valued for the «-states protocol, which is outlined below.
measurg16]: Let us split the continuous alphabet into several equal,

possibly partially overlapping, areas that are composed of
1= > EV_ (2) approximately equal quantum letters. During the basis recon-
ciliation procedure, Alice and Bob transmit the number of
In our case, when the information exchange between twehe area to which the information basis belongs and then, if
quantum systems employs all states of the Hilbert spacehey belong to the same area, decide that they used equal
expansion(2) transforms into a continuous nonorthogonal pases.

expansion of the fornj17] Clearly, such approximate basis reconciliation procedure
causes additional errors, orternal noise in the transmitted
1:f lv)(v|dV,, (3) message due to the differences between the quantum letters
v of the same area. However, the smaller the size of the areas

we select, the smaller such errors. We can calculate how the
amount of information in a single transmitted qubit depends
on the number of aredd in which we split the Hilbert space
with the help of the quantum-compatible-information tech-

wheredV, is the volume differential normalized to the di-
mension of Hilbert spac®:fdV,=D. The corresponding
joint probability distribution has the form

nigque outlined above.

Pag(de, dp) = Trag{[Ea(da) @ Eg(df)Jpagt, ) To do that, let us split the Bloch sphere into equal, for

where E g(dv)=|1)aa(vapdV,, and defines the so-called Simplicity round, areas, which partially overlap each other.
nonselecfeatompatible in'formatior[17 19: After basis reconciliation, the letters of Alice and Bob belong

to the same area and continuously fill it. Therefore, a set of
Pag(da,dB) elementary events related to the Alice-Bob system can be
lAB:J f Pag(da,dB)log, PA(da)Pg(dB)” ®) represented after basis reconciliation with the help of con-
«p tinuous expansion of the unit operator for the collection of
In the case of information exchange between two quanareas that include the points corresponding to the basis vec-
tum systems via an arbitrary discrete quantum alphabet, exers. The respective amount of informatibgs for the ap-
pansion(2) is defined by a specific set of quantum lettersproximate basis reconciliation depends on the size of the area
composing a specific quantum alphabet. or, in fact, on the number of areas we split the Hilbert space
From a practical point of view, the most significant differ- into. This dependency is shown in Fig. 1.
ence between a QKD protocol with continuous alphabet and With increasing total number of areés decreasing their
QKD protocols with discrete alphabets lies in the basis recsize, respectively 1,5 changes from=0.279 to 1 bit. At
onciliation procedure. In QKD protocols with discrete alpha-M =1, i.e., when the quantum alphabet is composed of only
bets, Alice and Bob performaxactbasis reconciliation, i.e., one area and, therefore, basis reconciliatiten facto van-
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ishes, the amount of information is equal to the accessible ~ |

information | xg=0.279 bit[17,19. With increasing number Q=1 € (0,1], (7)

of areas up tdV =100 we gel ,g=0.9 bit and in the limit of max

M —o we have thea priori evident resultl,g— 1 bit. In  wherel is the amount of information per one message with

other words, in order to ensure high valued gf one needs the presence of eavesdropping dggy is its maximal pos-

just to select an essential number of arbhs « [20]. sible value without eavesdropping. We will call this measure,
Note that reduction of the area size leads to increasing they analogy with the QBER, thenutual information error

number of areas we split the Hilbert space into and, thererate (MIER).

fore, to the corresponding increase of the additional informa- By contrast with the QBER, the MIER correctly reflects

tion on the number of areas transmitted via a public channghe degree of Eve's interference for an arbitrary QKD

during the basis reconciliation. The number of messages s@rotocol—with either the exact or approximate basis recon-

lected after the basis reconciliation procedure also decrease#iation procedure. In absence of any noise both measures

proportionally to the size of the area. Increase of accuracy IDBER and MIER have the same val@s é:o, which cor-
the basis reconciliation increases the total traffic in bothyectly reflects thea priori expected value. However, in the
quantum and classical channels. For transmission of th@ase of maximal interference by Eve, these measures are

given amount of secure information it will be higher than significantly different:Q=0.5 When(~2:1, which is due to

those of protocols with discrete alphabets. In practice, hovx_/fhe different definitions of the error rate measures.

ever, there is no need for infinite increase of the accuracy in | '1ha following, when it is not indicated otherwise, we

the basis reconciliation because there always exists an extefi use either the MIER as the most adequate measure of

nal noise in the experimental setup; it .is enough to Choos?.éve’s interference or the QBER under the limiting assump-
reasonable level of accuracy appropriate for every specifig,, that the bases for the-states protocol are reconciled
case in accordance with Fig. 1. exactly

One more specificity of the>-states protocol, which fol-
lows directly from the approximate basis reconciliation pro-
cedure, is how to estimate the level of Eve’s interference. ll. COMPARISON OF THE SIX-STATE AND  -STATE
One of the characteristics most accepted in the literature for QKD PROTOCOLS
estimation of Eve’s interference is the quantum bit error rate
(QBER). It was suggested to characterize the error rate in th
sifted key and it is defined as follows:

For determining the critical error rate in the transmitted
ﬁwessage up to which a QKD protocol ensures security of the
transmitted data one needs generally to prove absolute secu-
rity of the QKD protocol[22,23. However, in this work we
are not going in for the ultimate security proof, but perform
' (6) just acomparativeanalysis of one of the best six-state pro-
Nimax tocols until now with thee-state one. We will limit our con-
sideration by considering only two key strategies of
eavesdropping—intercept-resend and optimal eavesdropping
whereN is the number of correctly transmitted letters andand will compare the corresponding critical error rates for
Nimax iS the total number of transmitted letters. Using thisthese two QKD protocols.
definition of the QBER implies an assumption that without
eavesdropping) is equal to zero. Obviously, the QBER for
an ideal quantum channel without noise is equal to zero and
one can use the QBER for estimation of Eve’s interference. One of the simplest strategies of eavesdropping is the
However, in the case of the-states protocol, when due to intercept-resend strate¥2] when Eve measures a message
the approximate basis reconciliation we have information petransmitted over a secure channel in an arbitrary orthogonal
message less than a whole bit, a@ds not equal to zero basis and then transmits to Bob the results of this measure-
even without eavesdropping, we cannot use the QBER chament. It is clear that using such a strategy Eve knows exactly
acteristic for estimation of eavesdropping. In this case, thé¢he information received by Bob and therefore secure data
QBER as it has been defined previously simply does notransmission between Alice and Bob is impossible. There-
reflect the real level of Eve’s interference because it equalljore, the maximal possible level of errors which can be cor-
takes into account both an external noise due to the possiblected so that the transmission is a secure one does not ex-
eavesdropping and internal noise due to the QKD protocoteed the level of errors caused by the intercept-resend
specifics, namely, the approximate basis reconciliation. strategy of eavesdropping. As a result, calculation of the er-
In order to resolve this contradiction with the definition of ror rate due to this strategy of eavesdropping gives an upper
the QBER (see also Ref[21]), we suggest using another bound of the protocol efficacy at any applied strategy of
characteristic for the error rate, which correctly reflects theeavesdropping.
degree of Eve's interference for an arbitrary QKD protocol. In order to determine the error rate, Alice randomly se-
Let us define the fidelity of data transmission not as thdects some messages after the basis reconciliation and in-
relative number of correctly transferred letters, but as thdorms Bob over a public channel which specific states have
relative amount of correctly transferred information. Then,been transmitted. Bob then replies to Alice over the same
the error rate can be defined as public channel which states he has received. The ratio of

Q=1-

A. Intercept-resend strategy of eavesdropping
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incorrectly and correctly transmitted characters between Al- Uge

ice and Bob in the messages they disclosed gives us the error |0)6|0)e —— [0}l Pooe + | gl Pove,

rate. Rangonj sakr]npling u_sgd for calculatiorr: of the error rate Uae

assures that in the remaining messages the error rate is ap-

proximately the same. In thegfollowing, disclosed messagesp DERE 10)alP10)e + (Ll P1ve- (10

are discarded and not used for obtaining the key. The unitarity imposes the following restrictions, which are
Let us assume that Alice and Bob found that Alice transdue to the orthogonality and normalization conditions:

mitted to Bob statéa). Let us further assume that Eve used _

an orthogonal basi),| )} to eavesdrop the information. (Pod P10) +{Por|P11) =0,

Then, Eve measured the information resulting in either _ _

with probability [(y] a)[2 o |1, ) with probabilit)? |<¢/L|ir$ [@ool® + |Poyf* = [D1of” + |Pyy*= 1. (11)

and transmitted the resulting state to Bob. After measurement Taking into account conditiongll) and due to the sym-

of the statedy) and |, ) in the basis{|a),|a,)} Bob re- metry of the alphabets of the considered QKD protocols, we

ceives the correct resulstate| o)) with probabilities|(y| )| - _

and|(y, | )2, respectively, and incorrect resditate|er,)) ~ Can present a s¢d) of all the stategd;;) as the following

with probabilities|(#| @, )2 and|(¢, | a ). The total prob-  SUPerposition of only two basis statie, |Le:

ability of ge}ting the cilorrect resulh}l by Bob is equal to |Dgo) Yoo 7Yoi
Fa¢—|<.1//|a>| +[(yr, | )™ Co.rrespondmglz/, the probability = 0o | [ v0 v |(10%
of getting the wrong result is equal @,,=1-F . |D) = by | D) (12
In order to get the QBERY, one needs to average,, 10 Y11 10 E
over all Alice’s baseqa} and minimize then the result of |1y Yo1 7Yoo
averaging over Eve's bas¢gy: where the transformation coefficients are determined via the

two angles#, ¢ controlled by Eve:

1
a Ny {a} {y} »ymn:(— 1)m”cos(0—m5)cos(qo—n—).

whereN, and N, are the numbers of bases in Alice’s and 2
Eve’s alphabets, respectively. Averaging in the QKD proto- The initial state of the quantum system Alice-Bob-Eve
col with continuous alphabet implies integration instead ofﬁféE:ﬁ%@m)E(% which is described by the tensor prod-
summation. uct of the maximally entangled pair Alice-Bob and the initial
CalculatingQ, we get Qix-state= Q=-state= 1/3. Note that  Eve state|0)e(0|e, after transformation by optimal eaves-
this result does not depend on the bases in which Eve pefiyopping(10), is transferred into the final three-partite state
formg the measurements due to the total symmetry of th(ﬁféE that is an entangled state of Alice, Bob, and Eve:
considered QKD protocols. e Uge 2
Ppee— 7 Ppe ) ,
The resulting bipartite Alice-Bob, Alice-Eve, and Bob-
Eve density matrices obtained by averaging of the density

It ‘has been proved that in one-way communicatioNmatrix 52 _over the third system enable us to calculate the
schemes, when only Alice can send qubits to Bob, a SeCUigspective mutual information amounts:

connection between Alice and Bob is possible if the amount

Q=Y

B. Optimal eavesdropping strategy

. . . . . ~(2) — ~(2
of information Bob received from Alice exceeds the informa- Pké = TFEPZ%E—> N3
tion Eve received from either Alice or Bdi24]. This condi- o o
tion can be written as Pl = Trapide — |, (13
IAB> ma)(lAEleE)- (9) ﬁgl)E:Tl’Aﬁf,féEe IBE'

We will call Eve’s eavesdropping strategptimal if Eve The optimal eavesdropping condition, which must be
extracts fror_n the transmitting message maximum '”forma'checked, can be written as
tion at the given level of interference, which causes the cor-
responding level of errorgote that this can differ from the laeBe= Max lagge, (14)
optimal cloning of the transmitted messag)). 'ag=const

If the transformation performed by Eve is nonunitary, thenwhere Eve can vary the parametérand ¢.
it corresponds to a unitary transformation in an extended Comparing results for the Alice-Bob, Alice-Eve, and Bob-
guantum system with subsequent averaging over some vartve mutual informatior(l o, | oz, @andlgg, respectively cal-
ables, which gives Eve no additional information and createsulated with the help of Eq$10) and(13) versus the param-
no additional problems for Alice and Bob. Therefore, we canetersé and ¢ controlled by Eve, one can easily show that for
assume(without reducing the generality of our consider- all values off, ¢ we havel ;e=1g; thus we will not discuss
ation) that at optimal eavesdropping Eve performs a unitarylgg in the following.
transformationUgg on the state transferred from Alice to  The dependencies of the mutual informatiQg and | 5g
Bob |B)g and Eve’s probe stat®)g, which can be written as on the parameterg and ¢ can be properly displayed in the
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FIG. 2. Alice-Bob mutual Shannon informatidpg versus Eve’s eavesdropping parametgrg as 3D(upper row and contour plots
(bottom row, solid linesfor the six-state QKD protocala) and QKD protocol with continuous alphabgf). Dashed lines in the bottom
figures correspond to the Alice-Eve mutual Shannon informdtigndashed lines are symmetrical to solid lines with respect to the line

0=0).

form of three-dimensional plots. Keeping in mind thgtis QKD protocol at a higher level of Eve’s interference.
symmetrical withl g regardingd=¢, upper plots in Fig. 2 Let us now assume that Alice and Bob use shé&tybasis
show only thd 55 plot. One can easily see thiai; reaches its  reconciliation procedure. Safety means that Eve does not af-
maximum values 0.333 and 0.279 bit in the upper left cornefect selection of data by Alice and Bob during this procedure,
of the three-dimensional3D) plot (6=0,0=7/4) for the  does not generate false messages in the public insecure chan-

six-state ancke-state protocols, respectively. The minimum Nel. and does not use any additional transformations of her
value of 1,5 is equal to zero and is reached in the right Probe state after the basis reconciliation. In other words, she

bottom corner of the 3D plotéd=/4,¢=0) for both pro- gains no additional information from the basis reconciliation
tocols ' procedure. Justification of the assumptions about safety basis
' . . . . reconciliation is based on the following.
For analysis of the optimal eavesdropping conditi@4 . : . ;

it is conver?tional o shopw the dependeﬁggg and | L or)1 First, the assumptions made suit well the reality of up-to-
the same plot. which is done in the bottom blots ’(*)En Fi date technologies and look reasonable from the physical
where thers)e aependencies are presented 2\5 contourg.pl %int of view. In order to retrieve additional information
(solid and dashed lines correspond to equidistant levels q m basis reconciliation, Eve has to have unlimited quantum

. . emory, which allows storing of the intercepted quantum
I g=const andl e=const, respective)y Analysis of these Y 9 b q

contour plots shows that the optimal eavesdropping Condi|_m‘ormat|on infinitely long. At the up-to-date level of experi-

. ) _ mental techniques in this field, this is impossible to imple-
tion (1.4)' when Eve reaches thg maX|.mumIQf5—IAE(6,go) ment. Any imperfections in storing of the intercepted quan-
at a given level ofl \g=15(0, ¢), is achieved ab=7/4-¢.

A s tum information lead inevitably to decoherence and,
Due to the symmetrylag(6,¢)=lae(¢, 6), the security  cqrrespondingly, to loss of information. If the legitimate par-

condition I xg> 1 5 is satisfied up to a certain critical level iag of the QKD protocol(Alice and Bob) make a pause
65’ =¢y’=m/8, at which information retrieved by Eve is petween data transmission and basis reconciliation that ex-
equal to the information Leceived by Bob. At this critical ceeds the typical decoherence time in the system, then the
point, the critical error rat€), is equal to 0.63 and 0.60 for basis reconciliation will not give any additional information
the six-state ancdk-state protocols, respectively. to Eve.

Up to now, we analyzed the case when Alice and Bob do Second, though the assumption that Eve does not retrieve
not perform a basis reconciliation, which can essentially in-additional information from the basis reconciliation is defi-

crease the critical error rate and improve the stability of thenitely a limitation, it is, however, equally applicable to analy-
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TABLE I. Critical error rateQ, for the six-state ande-state  estimate of the multidimensional protocol efficacy we will

QKD protocols with and without basis reconciliation. calculate, by analogy with the two-dimensional case, errors
caused by the intercept-resend strategy.
Without reconciliation ~ With reconciliation Let us consider a quantum alphabet, consistingpmu-
QKD protocol of bases of bases tually unbiased bases iD-dimensional Hilbert space, i.e.,

i alphabet, different letters of which have equal projections
Six-state 0.630 0.806 onto each other. For such alphabet we will calculate now the
-state 0.600 0.811 accuracy of transmitting an arbitrary letter when Eve uses the
intercept-resend eavesdropping strategy.
_ _ » First, Alice transmits to Bob a random letter from a ran-
sis of both QKD protocols of interest. Calculated critical domly selected basis. If Eve guesses this basis correctly, the
error rates with limitations on eavesdropping strategies dqetter will be transmitted to Bob without distortion: this sce-
not serve then as absolute security criterions, but as long agyrio happens with the probability L. Otherwise, if Eve
our goal is to compare different QKD protocols with the goes not guess the right bagishappens with the probability
same reasonable restrictions on Eve’s strategies, this analysjis. 1 ILp), then the letter transmitted to Bob will be replaced
seems to be suitable for this purpose. by Eve during resending with equal probabiliiyue to the
Aftel’ SUCh Safety baSiS reconciliation, information re- above Suggestion Of the a|phabet Symmpb‘y a different
ceived by Bob from Alice proportionally increases by con-gne from another basis. Bob receives the right letter, which
trast with the case when no basis reconciliation is made, angas transmitted by Alice, with the probability @/ other-
reaches its maximum value of 1 bit per mess@gehe limit  \yise he receives a wrong letter.
of exact basis reconciliation for the-state QKD protocgl The total probability that Eve does not distort the letter
The contour plots in Fig. 2 remain the same, only the valuegransmitted by Alice(when Eve correctly or incorrectly
of information in the Alice-Bob system change. Information guesses the basiss equal toFp=1/Lp+(1-1/Lp)/D and

Lﬂ the AI(ijce-Eve system remains the same due to the assumgse corresponding probability to distort the letter is equal to
ion made.

After the basis reconciliation, the security condition _ _ 1 Lp-1
e bas e .l Qo=1-Fp=1-—|1+ . (15)
I ag>> A IS satisfied up to a certain critical vaIu%2 =@g Lp

depending on the specific protocol, different from the value

08”:9081) corresponding to the case without basis reconcilia—Checklng this formula for the BB8A.,=2,D=2) and six-

. I h itical S b L | state(Lp=3,D=2) protocols, we get the well-known num-
tion. Also, the critical error rate€), becomes significantly gers 1/4 and 1/3, respectively.

higher and is equal to 0.806 and 0.811 for the six-state an In the limit of D—c, we getQp— 1-1/Lp. This means

-state QKD pTO‘OCO'S' respectwely.. that alphabets with higher numbdrg of mutually unbiased
The calculation results for the critical error rate are SUM-atters are more favorable. For the maximum nuniberl of

ma\;\l/ze(cji in Table I.'d h ¢ .. mutually unbiased bases D+dimensional spacg26] we get
e do not consider the case of two-way communicationy « 10004 error rate

when one is capable of establishing a secure connection even
atQ>Q, [12]. Then, at error rates exceeding critical, i.e., at Q.= lim Qu=1- lim 1(1 + 9) -1 (16)
Q> Q,, the QKD protocol does not ensure the security of the D D D

transmitted data and the transmission session is not estay conirast with the 50% for the two-dimensional case. This
lished. So, the higher the critical error ra@, the more s due to the fact that in the two-dimensional case nonguess-
stable is the QKD protocol to eavesdropping attacks, becausgg a letter by Bob means guessing the opposite letter and if

it allows a higher level of interference. _the error rateQ}” > 0.5 then Bob can simply replace all “0”
Summarizing, our information analysis shows that with-j, the message with “1” and vice versa achiev'@ﬁ):l
out basis reconciliation the six-state protocol has the best ~(1) o i e o

: . P =Q, <0.5. In multidimensional case, this trick does not
maximum value of the critical error rate. However, after the

. L . work—the higher the dimensionality of the Hilbert space, the
safety basis reconciliation procedure applied we see that th‘ﬁgher the maximum possible error rate

co-state protocol has a higher critical error rate in comparison Therefore, one can conclude from the ratl6) that there

Wr':h thf S.');.'Stat? tﬁrotpco![. :n othter V\{ords,bthe |nformaé|on are no restrictions in principle on increasing the efficacy of
charactenistics ot the six-state protocol can be surpassed ev QKD protocols with increasing dimensionality of the

n the_case of a two-dimensional Hilbert space due 10 thg e space because there is no nontrivial upper threshold
enlarging of the alphabet used. set by the intercept-resend strategy.
Keeping these specifics of QKD protocols with multidi-
IV. MULTIDIMENSIONAL CASE mensiqnal alphabets, let us consider now the MIER fc_)r.an
extension of theo-state protocol onto the case of multidi-
In this section, we will discuss the potential of using mul- mensional Hilbert spaces.
tidimensional Bob and Alice Hilbert spacé® >2) for im- Note that in the multidimensional case, the maximum
proving the properties of the QKD protocols, which is espe-possible selected information between two Systehﬁ;,(
cially promising for thex-state QKD protocol. For the upper =log, D grows infinitely atD —o whereas the maximum
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1.00; dimensionality of the Hilbert space the critical error rate in-
soeeeeee®® creases and in the limit of infinite-dimensional space the pro-
098 ....-0'" tocol becomes nonthreshold.
o Such behavior of the critical error rate does not depend on
0.92¢ o the specific structure of eavesdropping by Eve and can be
0?0 gsl .' clarified as follows. When Alice sends a message, then both
' Eve and Bob have priori minimal information about this

084l * message being “maximally entangled” in the multidimen-
. sional space. After basis reconciliation, Alice and Bob can

ool o o select only maximally correlated messages for which they
0 4 8 1216 20 24 28 32 choose approximately similar bases. As a result, information

D connectivity between Alice and Bob per one message will be
~ significantly improved. Eve, in her turn, cannot affect the
FIG. 3. Critical error rateQ, versus the dimensio® of the  processes of message selection and her information remains
Hilbert space. the same. Therefore, Eve with increasing dimensionality of
the Hilbert space retrieves much less information than Bob,
possible nonselected information is bounded: it is equal tavhich leads finally to the nonthreshold property of the QKD
the amount ofaccessiblénformation[19] protocol with a continuous alphabet. In the reasoning above,
we have made only an assumption about safety basis recon-

° ciliation, which was argued in Sec. Il B.

1 1
D —
Iaccessible‘ IOgZ D- 2 T
In2,5k
V. CONCLUSIONS

which in the limit of D—e is restricted by the value |, conciusion, it is shown that use of a continuous alpha-

| acoessibie= 0-61 bit. bet in the case when an eavesdropper has no ability to store

__In the case when Eve does not extract additional informag,  jnsercept information in a quantum form leads potentially
tion from the basis reconciliation procedure and disengag

h if f i d . fo a slightly higher critical error rate than that of the six-state
erself from a specific eavesdropping strategy, we can esgirotocol, even in the two-dimensional case.

rn?te thPT uppher I|.m|t of t_hedmgxurznumbamﬁunt of no'r;)\?elgc;te With increasing dimensionality of the Hilbert space the
n OFmatl'Or]lt atkl]s re]?e've Dy Eve ydtbe é\cces?llbe INTOcritical error rate for thee-state protocol increases, and in
;nrr?gl(l)gr. n fact, the information received by Eve will be even,q jimit of infinite-dimensional space the protocol becomes

Th finf ion in th Alice-Bob dnonthreshold. This promising property could, in our view,
_The amount of information in the systems Alice-Bob andg; iy jate efforts in experimental implementation of this pro-
Alice-Eve after the basis reconciliation procedure is given by, ) .

the maximum possible selected or nonselected information in |\ 114 case of two-dimensional Hilbert space, thetate

the system, respectively. Then the critical mutual informationq b protocol can be experimentally implemented with the
error rate(7) in the limit D — - is equal to unity, help of the standard QKD schemes, based on coding a qubit

_ o 0.61 with photon polarization. Demonstration of the nonthreshold
Qo =1-lim %S‘S'b'e: 1-Ilim——=1. (17 property of the infinite-dimensionab-state QKD protocol
Do may p—= l0g, D will, however, require some novel experimental solutions.

The critical mutual information error rat®, calculated
by formula (17) versus the dimensionality of the Hilbert
space is shown in Fig. 3. This result shows a qualitatively This work was partially supported by RFBR Grants No.
different property of the multidimensionad-state protocol 02-03-32200, No. 04-02-17554, and by INTAS Grant No.
with respect to the two-dimensional case: with increasingNFO 00-479.
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