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A quantum-information analysis of how the size and dimensionality of the quantum alphabet affect the
critical error rate of the quantum-key-distribution(QKD) protocols is given on an example of two QKD
protocols—the six-state and̀-state(i.e., a protocol with continuous alphabet) ones. In the case of a two-
dimensional Hilbert space, it is shown that, under certain assumptions, increasing the number of letters in the
quantum alphabet up to infinity slightly increases the critical error rate. Increasing additionally the dimension-
ality of the Hilbert space leads to a further increase in the critical error rate.
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I. INTRODUCTION

Since the idea of quantum cryptography was proposed
first [1], a number of different quantum-key-distribution
(QKD) protocols implementing it have been suggested[2–5].
Despite their diversity, all of them are based on a beautiful
idea employing the basic “no-cloning” principle of quantum
mechanics—the impossibility of copying arbitrary quantum
states[6]. Thanks to this, an eavesdropper cannot intercept a
quantum communication channel without disturbing a trans-
mitting message if it contains a set ofincompatible, i.e.,
essentially quantum, states not governed by the rules of clas-
sical logic. Moreover, any attempt to obtain any information
about this set of states inevitably disturbs the transmitted
message.

Keeping this advantage of quantum physics for cryptog-
raphy in mind, any QKD protocol uses messages entirely
composed of a set of quantum states or a so-calledquantum
alphabet that consists of incompatible “letters.” Various
QKD protocols are distinguished in essence only by different
alphabets, which ensure secure message transmission up to a
critical error rate that determines the protocol efficiency. By
analyzing distortions in received messages, one can reveal an
eavesdropping attack, but in order to establish a secure con-
nection, one should also be able to resist such attacks. There-
fore, one of the reasons for developing more QKD protocols
is increasing their critical error rates.

All known QKD protocols[1,3,4] using carriers of infor-
mation with a finite-dimensional Hilbert space are based on
discrete quantum alphabets, i.e., with fixed number of letters.
The first QKD protocol proposed in 1984 by Bennett and
Brassard(BB84) [1] gives an example of a protocol in which
four quantum incompatible states, setting two mutually non-
orthogonal bases, are used. The alphabet of the six-state pro-
tocol [4] is composed of three mutually nonorthogonal bases
hhu0l , u1lj ,hsu0l± u1ld /Î2j ,hsu0l± i u1ld /Î2jj in a two-
dimensional Hilbert space, which makes this protocol totally
symmetrical on the Bloch sphere and leads to the fact that
information characteristics, namely, the critical error rate, of

the six-state protocol surpasses that of the BB84 protocol
[4,7]. Further increasing the critical error rate, as was dis-
cussed in the literature[8–10], is basically connected with an
increase in the dimension of the Hilbert space of the quan-
tum channel.

In the two-dimensional case, there is a commonly ac-
cepted opinion that the six-state protocol has the best effi-
cacy[11] (however, there is no proof of this statement for all
possible eavesdropping strategies). In this paper, we clarify
whether increasing the number of letters in the alphabet in a
Hilbert space of fixed dimension could improve the QKD
protocol efficacy or not. In other words, can we surpass the
six-state protocol efficacy, even in the two-dimensional case,
due to an increase in the number of letters, or not?

In order to answer this question, we introduce a QKD
protocol that has procedures similar to standard QKD proto-
cols (for instance, the six-state protocol), but it employs all
arbitrary superpositions of orthogonal basis states that form
the continuous alphabet. By analogy with the six-state pro-
tocol, we will call such a protocol thè-state protocol. The
efficacy of thè -state protocol can be calculated as for other
QKD protocols with the help of a regular information analy-
sis based on the calculation of the mutual Shannon informa-
tion between different two-partite subsystems of the tripartite
system Alice-Eve-Bob[12].

The paper is organized as follows. In Sec. II, we outline
some specific properties of thè-state protocol and give the
basic concept and key mathematical formalism of the com-
patible information in application to the quantum-
information analysis of arbitrary QKD protocols. In Sec. III,
we provide a comparative quantum-information analysis of
the six-state and̀ -state QKD protocols. The benefits of us-
ing Hilbert spaces with arbitrary dimension in QKD proto-
cols are considered in Sec. IV. We conclude the paper by
summarizing the results and discussing the possibilities of
experimental realization in Sec. V.

II. SPECIFIC PROPERTIES OF THE `-STATE
QKD PROTOCOL

In the following, we assume that before eavesdropping
the Alice-Bob system is described entirely by a totally en-
tangled pair of photons[13].*Electronic address: sych@comsim1.phys.msu.ru
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In other words, we will analyze the Einstein-Podolsky-
Rosen(EPR) version of QKD protocols, which is similar to
the Ekert version of the BB84 protocol[2]. Obviously, such
a representation of QKD protocols is equivalent to the case
where Alice simply transmits single photons to Bob, without
any source of EPR pairs.

From a theoretical point of view, the key difference in the
analysis of thè -state protocol and of QKD protocols with
discrete alphabets lies in the calculation of the amount of
information that can be encoded with the help of a continu-
ous alphabet. A natural quantitative measure for the amount
of information is the standard mutual Shannon information
functional of the classical input-output(Alice-Bob) joint
probability distributionPAB:

IABfPABg = SfPAg + SfPBg − SfPABg, s1d

whereSfPg is the classical Shannon entropy functional for
the joint,P=PAB, and marginal,P=PA,PB, probability mea-
sures[14].

The specifics of a continuous alphabet is apparent in the
calculation of the joint probability distribution, defined on a
continuous set of elementary quantum events, which can be
determined by the wave functions or the state vectors of the
quantum-information system. Mathematically, a set of el-
ementary events can be chosen by defining a set of positive

operators,Ên= unuknu, representing a nonorthogonal expan-
sion of the unit operator[15] or the positive operator-valued
measure[16]:

1̂ = o Ên. s2d

In our case, when the information exchange between two
quantum systems employs all states of the Hilbert space,
expansion(2) transforms into a continuous nonorthogonal
expansion of the form[17]

1̂ =E
n

unlknudVn, s3d

wheredVn is the volume differential normalized to the di-
mension of Hilbert spaceD :edVn=D. The corresponding
joint probability distribution has the form

PABsda,dbd = TrABhfÊAsdad ^ ÊBsdbdgr̂ABj, s4d

where ÊA,Bsdnd= unlA,BknuA,BdVn, and defines the so-called
nonselectedcompatible information[17,18]:

IAB =E
a
E

b

PABsda,dbdlog2
PABsda,dbd

PAsdadPBsdbd
. s5d

In the case of information exchange between two quan-
tum systems via an arbitrary discrete quantum alphabet, ex-
pansion(2) is defined by a specific set of quantum letters
composing a specific quantum alphabet.

From a practical point of view, the most significant differ-
ence between a QKD protocol with continuous alphabet and
QKD protocols with discrete alphabets lies in the basis rec-
onciliation procedure. In QKD protocols with discrete alpha-
bets, Alice and Bob performexactbasis reconciliation, i.e.,

after the transmission of all messages, they select only that
part of the messages for which they have used the same
information bases.

In contrast to a discrete alphabet, one cannot perform an
exact basis reconciliation procedure for the`-states protocol,
because one needs to transmit an infinite amount of informa-
tion about a point from the continuum. Therefore, we pro-
pose to apply anapproximatebases reconciliation procedure
for the `-states protocol, which is outlined below.

Let us split the continuous alphabet into several equal,
possibly partially overlapping, areas that are composed of
approximately equal quantum letters. During the basis recon-
ciliation procedure, Alice and Bob transmit the number of
the area to which the information basis belongs and then, if
they belong to the same area, decide that they used equal
bases.

Clearly, such approximate basis reconciliation procedure
causes additional errors, orinternal noise, in the transmitted
message due to the differences between the quantum letters
of the same area. However, the smaller the size of the areas
we select, the smaller such errors. We can calculate how the
amount of informationI in a single transmitted qubit depends
on the number of areasM in which we split the Hilbert space
with the help of the quantum-compatible-information tech-
nique outlined above.

To do that, let us split the Bloch sphere into equal, for
simplicity round, areas, which partially overlap each other.
After basis reconciliation, the letters of Alice and Bob belong
to the same area and continuously fill it. Therefore, a set of
elementary events related to the Alice-Bob system can be
represented after basis reconciliation with the help of con-
tinuous expansion of the unit operator for the collection of
areas that include the points corresponding to the basis vec-
tors. The respective amount of informationIAB for the ap-
proximate basis reconciliation depends on the size of the area
or, in fact, on the number of areas we split the Hilbert space
into. This dependency is shown in Fig. 1.

With increasing total number of areas(or decreasing their
size, respectively), IAB changes from.0.279 to 1 bit. At
M =1, i.e., when the quantum alphabet is composed of only
one area and, therefore, basis reconciliationde factovan-

FIG. 1. The amount of informationI per transmission versus the
number of areasM in which the two-dimensional Hilbert space of
states is split.
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ishes, the amount of information is equal to the accessible
information IAB.0.279 bit[17,19]. With increasing number
of areas up toM =100 we getIAB.0.9 bit and in the limit of
M→` we have thea priori evident resultIAB→1 bit. In
other words, in order to ensure high values ofIAB one needs
just to select an essential number of areasM ,` [20].

Note that reduction of the area size leads to increasing the
number of areas we split the Hilbert space into and, there-
fore, to the corresponding increase of the additional informa-
tion on the number of areas transmitted via a public channel
during the basis reconciliation. The number of messages se-
lected after the basis reconciliation procedure also decreases
proportionally to the size of the area. Increase of accuracy in
the basis reconciliation increases the total traffic in both
quantum and classical channels. For transmission of the
given amount of secure information it will be higher than
those of protocols with discrete alphabets. In practice, how-
ever, there is no need for infinite increase of the accuracy in
the basis reconciliation because there always exists an exter-
nal noise in the experimental setup; it is enough to choose a
reasonable level of accuracy appropriate for every specific
case in accordance with Fig. 1.

One more specificity of thè -states protocol, which fol-
lows directly from the approximate basis reconciliation pro-
cedure, is how to estimate the level of Eve’s interference.
One of the characteristics most accepted in the literature for
estimation of Eve’s interference is the quantum bit error rate
(QBER). It was suggested to characterize the error rate in the
sifted key and it is defined as follows:

Q = 1 −
N

Nmax
, s6d

whereN is the number of correctly transmitted letters and
Nmax is the total number of transmitted letters. Using this
definition of the QBER implies an assumption that without
eavesdroppingQ is equal to zero. Obviously, the QBER for
an ideal quantum channel without noise is equal to zero and
one can use the QBER for estimation of Eve’s interference.

However, in the case of thè-states protocol, when due to
the approximate basis reconciliation we have information per
message less than a whole bit, andQ is not equal to zero
even without eavesdropping, we cannot use the QBER char-
acteristic for estimation of eavesdropping. In this case, the
QBER as it has been defined previously simply does not
reflect the real level of Eve’s interference because it equally
takes into account both an external noise due to the possible
eavesdropping and internal noise due to the QKD protocol
specifics, namely, the approximate basis reconciliation.

In order to resolve this contradiction with the definition of
the QBER (see also Ref.[21]), we suggest using another
characteristic for the error rate, which correctly reflects the
degree of Eve’s interference for an arbitrary QKD protocol.
Let us define the fidelity of data transmission not as the
relative number of correctly transferred letters, but as the
relative amount of correctly transferred information. Then,
the error rate can be defined as

Q̃ = 1 −
I

Imax
P f0,1g, s7d

whereI is the amount of information per one message with
the presence of eavesdropping andImax is its maximal pos-
sible value without eavesdropping. We will call this measure,
by analogy with the QBER, themutual information error
rate (MIER).

By contrast with the QBER, the MIER correctly reflects
the degree of Eve’s interference for an arbitrary QKD
protocol—with either the exact or approximate basis recon-
ciliation procedure. In absence of any noise both measures

QBER and MIER have the same value,Q=Q̃=0, which cor-
rectly reflects thea priori expected value. However, in the
case of maximal interference by Eve, these measures are

significantly different:Q=0.5 whenQ̃=1, which is due to
the different definitions of the error rate measures.

In the following, when it is not indicated otherwise, we
will use either the MIER as the most adequate measure of
Eve’s interference or the QBER under the limiting assump-
tion that the bases for thè-states protocol are reconciled
exactly.

III. COMPARISON OF THE SIX-STATE AND `-STATE
QKD PROTOCOLS

For determining the critical error rate in the transmitted
message up to which a QKD protocol ensures security of the
transmitted data one needs generally to prove absolute secu-
rity of the QKD protocol[22,23]. However, in this work we
are not going in for the ultimate security proof, but perform
just acomparativeanalysis of one of the best six-state pro-
tocols until now with thè -state one. We will limit our con-
sideration by considering only two key strategies of
eavesdropping—intercept-resend and optimal eavesdropping
and will compare the corresponding critical error rates for
these two QKD protocols.

A. Intercept-resend strategy of eavesdropping

One of the simplest strategies of eavesdropping is the
intercept-resend strategy[12] when Eve measures a message
transmitted over a secure channel in an arbitrary orthogonal
basis and then transmits to Bob the results of this measure-
ment. It is clear that using such a strategy Eve knows exactly
the information received by Bob and therefore secure data
transmission between Alice and Bob is impossible. There-
fore, the maximal possible level of errors which can be cor-
rected so that the transmission is a secure one does not ex-
ceed the level of errors caused by the intercept-resend
strategy of eavesdropping. As a result, calculation of the er-
ror rate due to this strategy of eavesdropping gives an upper
bound of the protocol efficacy at any applied strategy of
eavesdropping.

In order to determine the error rate, Alice randomly se-
lects some messages after the basis reconciliation and in-
forms Bob over a public channel which specific states have
been transmitted. Bob then replies to Alice over the same
public channel which states he has received. The ratio of
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incorrectly and correctly transmitted characters between Al-
ice and Bob in the messages they disclosed gives us the error
rate. Random sampling used for calculation of the error rate
assures that in the remaining messages the error rate is ap-
proximately the same. In the following, disclosed messages
are discarded and not used for obtaining the key.

Let us assume that Alice and Bob found that Alice trans-
mitted to Bob stateual. Let us further assume that Eve used
an orthogonal basishucl , uc'lj to eavesdrop the information.
Then, Eve measured the information resulting in eitherucl
with probability zkc ualz2 or uc'l with probability zkc' ualz2

and transmitted the resulting state to Bob. After measurement
of the statesucl and uc'l in the basishual , ua'lj Bob re-
ceives the correct result(stateual) with probabilitieszkc ualz2

and zkc' ualz2, respectively, and incorrect result(stateua'l)
with probabilitieszkc ua'lz2 and zkc' ua'lz2. The total prob-
ability of getting the correct resultual by Bob is equal to
Fac= zkc ualz4+ zkc' ualz4. Correspondingly, the probability
of getting the wrong result is equal toQac=1−Fac.

In order to get the QBERQ, one needs to averageQac

over all Alice’s baseshaj and minimize then the result of
averaging over Eve’s baseshcj:

Q =
1

NaNc
o
haj

o
hcj

Qac, s8d

whereNa and Nc are the numbers of bases in Alice’s and
Eve’s alphabets, respectively. Averaging in the QKD proto-
col with continuous alphabet implies integration instead of
summation.

Calculating Q, we get Qsix-state=Q`-state=1/3. Note that
this result does not depend on the bases in which Eve per-
forms the measurements due to the total symmetry of the
considered QKD protocols.

B. Optimal eavesdropping strategy

It has been proved that in one-way communication
schemes, when only Alice can send qubits to Bob, a secure
connection between Alice and Bob is possible if the amount
of information Bob received from Alice exceeds the informa-
tion Eve received from either Alice or Bob[24]. This condi-
tion can be written as

IAB . maxsIAE,IBEd. s9d

We will call Eve’s eavesdropping strategyoptimal if Eve
extracts from the transmitting message maximum informa-
tion at the given level of interference, which causes the cor-
responding level of errors(note that this can differ from the
optimal cloning of the transmitted message[25]).

If the transformation performed by Eve is nonunitary, then
it corresponds to a unitary transformation in an extended
quantum system with subsequent averaging over some vari-
ables, which gives Eve no additional information and creates
no additional problems for Alice and Bob. Therefore, we can
assume(without reducing the generality of our consider-
ation) that at optimal eavesdropping Eve performs a unitary
transformationUBE on the state transferred from Alice to
Bob ublB and Eve’s probe stateu0lE, which can be written as

u0lBu0lE ——→
UBE

u0lBuF00lE + u1lBuF01lE,

u1lBu0lE ——→
UBE

u0lBuF10lE + u1lBuF11lE. s10d

The unitarity imposes the following restrictions, which are
due to the orthogonality and normalization conditions:

kF00uF10l + kF01uF11l = 0,

uF00u2 + uF01u2 = uF10u2 + uF11u2 = 1. s11d

Taking into account conditions(11) and due to the sym-
metry of the alphabets of the considered QKD protocols, we

can present a setuFl
→

of all the statesuFi jl as the following
superposition of only two basis statesu0lE, u1lE:

uFl
→

=1
uF00l
uF01l
uF10l
uF11l

2 =1
g00 g01

g10 g11

g11 g10

g01 g00

2Su0lE

u1lE
D , s12d

where the transformation coefficients are determined via the
two anglesu ,w controlled by Eve:

gmn= s− 1dmn cosSu − m
p

2
DcosSw − n

p

2
D .

The initial state of the quantum system Alice-Bob-Eve
r̂ABE

s1d = r̂AB
s1d

^ u0lEk0uE, which is described by the tensor prod-
uct of the maximally entangled pair Alice-Bob and the initial
Eve stateu0lEk0uE, after transformation by optimal eaves-
dropping(10), is transferred into the final three-partite state
r̂ABE

s2d that is an entangled state of Alice, Bob, and Eve:

r̂ABE
s1d ——→

UBE

r̂ABE
s2d .

The resulting bipartite Alice-Bob, Alice-Eve, and Bob-
Eve density matrices obtained by averaging of the density
matrix r̂ABE

s2d over the third system enable us to calculate the
respective mutual information amounts:

r̂AB
s2d = TrEr̂ABE

s2d → IAB,

r̂AE
s2d = TrBr̂ABE

s2d → IAE, s13d

r̂BE
s2d = TrAr̂ABE

s2d → IBE.

The optimal eavesdropping condition, which must be
checked, can be written as

IAE,BE = max
IAB=const

IAE,BE, s14d

where Eve can vary the parametersu andw.
Comparing results for the Alice-Bob, Alice-Eve, and Bob-

Eve mutual information(IAB, IAE, andIBE, respectively) cal-
culated with the help of Eqs.(10) and(13) versus the param-
etersu andw controlled by Eve, one can easily show that for
all values ofu ,w we haveIAEù IBE; thus we will not discuss
IBE in the following.

The dependencies of the mutual informationIAB and IAE
on the parametersu andw can be properly displayed in the
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form of three-dimensional plots. Keeping in mind thatIAE is
symmetrical withIAB regardingu=w, upper plots in Fig. 2
show only theIAB plot. One can easily see thatIAB reaches its
maximum values 0.333 and 0.279 bit in the upper left corner
of the three-dimensional(3D) plot su=0,w=p /4d for the
six-state and̀ -state protocols, respectively. The minimum
value of IAB is equal to zero and is reached in the right
bottom corner of the 3D plotssu=p /4 ,w=0d for both pro-
tocols.

For analysis of the optimal eavesdropping condition(14)
it is conventional to show the dependenciesIAB and IAE on
the same plot, which is done in the bottom plots on Fig. 2
where these dependencies are presented as contour plots
(solid and dashed lines correspond to equidistant levels of
IAB=const andIAE=const, respectively). Analysis of these
contour plots shows that the optimal eavesdropping condi-
tion (14), when Eve reaches the maximum ofIAE= IAEsu ,wd
at a given level ofIAB= IABsu ,wd, is achieved atu=p /4−w.

Due to the symmetryIABsu ,wd= IAEsw ,ud, the security
condition IAB. IAE is satisfied up to a certain critical level
u0

s1d=w0
s1d=p /8, at which information retrieved by Eve is

equal to the information received by Bob. At this critical

point, the critical error rateQ̃0 is equal to 0.63 and 0.60 for
the six-state and̀ -state protocols, respectively.

Up to now, we analyzed the case when Alice and Bob do
not perform a basis reconciliation, which can essentially in-
crease the critical error rate and improve the stability of the

QKD protocol at a higher level of Eve’s interference.
Let us now assume that Alice and Bob use thesafetybasis

reconciliation procedure. Safety means that Eve does not af-
fect selection of data by Alice and Bob during this procedure,
does not generate false messages in the public insecure chan-
nel, and does not use any additional transformations of her
probe state after the basis reconciliation. In other words, she
gains no additional information from the basis reconciliation
procedure. Justification of the assumptions about safety basis
reconciliation is based on the following.

First, the assumptions made suit well the reality of up-to-
date technologies and look reasonable from the physical
point of view. In order to retrieve additional information
from basis reconciliation, Eve has to have unlimited quantum
memory, which allows storing of the intercepted quantum
information infinitely long. At the up-to-date level of experi-
mental techniques in this field, this is impossible to imple-
ment. Any imperfections in storing of the intercepted quan-
tum information lead inevitably to decoherence and,
correspondingly, to loss of information. If the legitimate par-
ties of the QKD protocol(Alice and Bob) make a pause
between data transmission and basis reconciliation that ex-
ceeds the typical decoherence time in the system, then the
basis reconciliation will not give any additional information
to Eve.

Second, though the assumption that Eve does not retrieve
additional information from the basis reconciliation is defi-
nitely a limitation, it is, however, equally applicable to analy-

FIG. 2. Alice-Bob mutual Shannon informationIAB versus Eve’s eavesdropping parametersu, w as 3D(upper row) and contour plots
(bottom row, solid lines) for the six-state QKD protocol(a) and QKD protocol with continuous alphabet(b). Dashed lines in the bottom
figures correspond to the Alice-Eve mutual Shannon informationIAE (dashed lines are symmetrical to solid lines with respect to the line
u=w).
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sis of both QKD protocols of interest. Calculated critical
error rates with limitations on eavesdropping strategies do
not serve then as absolute security criterions, but as long as
our goal is to compare different QKD protocols with the
same reasonable restrictions on Eve’s strategies, this analysis
seems to be suitable for this purpose.

After such safety basis reconciliation, information re-
ceived by Bob from Alice proportionally increases by con-
trast with the case when no basis reconciliation is made, and
reaches its maximum value of 1 bit per message(in the limit
of exact basis reconciliation for thè-state QKD protocol).
The contour plots in Fig. 2 remain the same, only the values
of information in the Alice-Bob system change. Information
in the Alice-Eve system remains the same due to the assump-
tion made.

After the basis reconciliation, the security condition
IAB. IAE is satisfied up to a certain critical valueu0

s2d=w0
s2d,

depending on the specific protocol, different from the value
u0

s1d=w0
s1d corresponding to the case without basis reconcilia-

tion. Also, the critical error rateQ̃0 becomes significantly
higher and is equal to 0.806 and 0.811 for the six-state and
`-state QKD protocols, respectively.

The calculation results for the critical error rate are sum-
marized in Table I.

We do not consider the case of two-way communication,
when one is capable of establishing a secure connection even

at Q̃.Q̃0 [12]. Then, at error rates exceeding critical, i.e., at

Q̃.Q̃0, the QKD protocol does not ensure the security of the
transmitted data and the transmission session is not estab-

lished. So, the higher the critical error rateQ̃0, the more
stable is the QKD protocol to eavesdropping attacks, because
it allows a higher level of interference.

Summarizing, our information analysis shows that with-
out basis reconciliation the six-state protocol has the best
maximum value of the critical error rate. However, after the
safety basis reconciliation procedure applied we see that the
`-state protocol has a higher critical error rate in comparison
with the six-state protocol. In other words, the information
characteristics of the six-state protocol can be surpassed even
in the case of a two-dimensional Hilbert space due to the
enlarging of the alphabet used.

IV. MULTIDIMENSIONAL CASE

In this section, we will discuss the potential of using mul-
tidimensional Bob and Alice Hilbert spacessD.2d for im-
proving the properties of the QKD protocols, which is espe-
cially promising for thè -state QKD protocol. For the upper

estimate of the multidimensional protocol efficacy we will
calculate, by analogy with the two-dimensional case, errors
caused by the intercept-resend strategy.

Let us consider a quantum alphabet, consisting ofLD mu-
tually unbiased bases inD-dimensional Hilbert space, i.e.,
alphabet, different letters of which have equal projections
onto each other. For such alphabet we will calculate now the
accuracy of transmitting an arbitrary letter when Eve uses the
intercept-resend eavesdropping strategy.

First, Alice transmits to Bob a random letter from a ran-
domly selected basis. If Eve guesses this basis correctly, the
letter will be transmitted to Bob without distortion: this sce-
nario happens with the probability 1/LD. Otherwise, if Eve
does not guess the right basis(it happens with the probability
1−1/LD), then the letter transmitted to Bob will be replaced
by Eve during resending with equal probability(due to the
above suggestion of the alphabet symmetry) by a different
one from another basis. Bob receives the right letter, which
was transmitted by Alice, with the probability 1/D; other-
wise he receives a wrong letter.

The total probability that Eve does not distort the letter
transmitted by Alice(when Eve correctly or incorrectly
guesses the basis) is equal toFD=1/LD+s1−1/LDd /D and
the corresponding probability to distort the letter is equal to

QD = 1 −FD = 1 −
1

LD
S1 +

LD − 1

D
D . s15d

Checking this formula for the BB84sLD=2,D=2d and six-
statesLD=3,D=2d protocols, we get the well-known num-
bers 1/4 and 1/3, respectively.

In the limit of D→`, we getQD→1−1/LD. This means
that alphabets with higher numbersLD of mutually unbiased
letters are more favorable. For the maximum numberD+1 of
mutually unbiased bases inD-dimensional space[26] we get
the 100% error rate

Q` = lim
D→`

QD = 1 − lim
D→`

1

D
S1 +

D

D
D = 1, s16d

by contrast with the 50% for the two-dimensional case. This
is due to the fact that in the two-dimensional case nonguess-
ing a letter by Bob means guessing the opposite letter and if
the error rateQ2

s1d.0.5 then Bob can simply replace all “0”
in the message with “1” and vice versa, achievingQ2

s2d=1
−Q2

s1d,0.5. In multidimensional case, this trick does not
work—the higher the dimensionality of the Hilbert space, the
higher the maximum possible error rate.

Therefore, one can conclude from the ratio(16) that there
are no restrictions in principle on increasing the efficacy of
the QKD protocols with increasing dimensionality of the
Hilbert space because there is no nontrivial upper threshold
set by the intercept-resend strategy.

Keeping these specifics of QKD protocols with multidi-
mensional alphabets, let us consider now the MIER for an
extension of thè -state protocol onto the case of multidi-
mensional Hilbert spaces.

Note that in the multidimensional case, the maximum
possible selected information between two systemsImax

D

=log2 D grows infinitely at D→` whereas the maximum

TABLE I. Critical error rateQ̃0 for the six-state and̀ -state
QKD protocols with and without basis reconciliation.

QKD protocol
Without reconciliation

of bases
With reconciliation

of bases

Six-state 0.630 0.806

`-state 0.600 0.811
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possible nonselected information is bounded: it is equal to
the amount ofaccessibleinformation [19]

Iaccessible
D = log2 D −

1

ln 2o
k=2

D
1

k
,

which in the limit of D→` is restricted by the value
Iaccessible

` .0.61 bit.
In the case when Eve does not extract additional informa-

tion from the basis reconciliation procedure and disengage
herself from a specific eavesdropping strategy, we can esti-
mate the upper limit of the maximum amount of nonselected
information that is received by Eve by the accessible infor-
mation. In fact, the information received by Eve will be even
smaller.

The amount of information in the systems Alice-Bob and
Alice-Eve after the basis reconciliation procedure is given by
the maximum possible selected or nonselected information in
the system, respectively. Then the critical mutual information
error rate(7) in the limit D→` is equal to unity,

Q̃0
` = 1 − lim

D→`

Iaccessible
D

Imax
D = 1 − lim

D→`

0.61

log2 D
= 1. s17d

The critical mutual information error rateQ̃0 calculated
by formula (17) versus the dimensionality of the Hilbert
space is shown in Fig. 3. This result shows a qualitatively
different property of the multidimensional̀-state protocol
with respect to the two-dimensional case: with increasing

dimensionality of the Hilbert space the critical error rate in-
creases and in the limit of infinite-dimensional space the pro-
tocol becomes nonthreshold.

Such behavior of the critical error rate does not depend on
the specific structure of eavesdropping by Eve and can be
clarified as follows. When Alice sends a message, then both
Eve and Bob havea priori minimal information about this
message being “maximally entangled” in the multidimen-
sional space. After basis reconciliation, Alice and Bob can
select only maximally correlated messages for which they
choose approximately similar bases. As a result, information
connectivity between Alice and Bob per one message will be
significantly improved. Eve, in her turn, cannot affect the
processes of message selection and her information remains
the same. Therefore, Eve with increasing dimensionality of
the Hilbert space retrieves much less information than Bob,
which leads finally to the nonthreshold property of the QKD
protocol with a continuous alphabet. In the reasoning above,
we have made only an assumption about safety basis recon-
ciliation, which was argued in Sec. III B.

V. CONCLUSIONS

In conclusion, it is shown that use of a continuous alpha-
bet in the case when an eavesdropper has no ability to store
an intercept information in a quantum form leads potentially
to a slightly higher critical error rate than that of the six-state
protocol, even in the two-dimensional case.

With increasing dimensionality of the Hilbert space the
critical error rate for thè -state protocol increases, and in
the limit of infinite-dimensional space the protocol becomes
nonthreshold. This promising property could, in our view,
stimulate efforts in experimental implementation of this pro-
tocol.

In the case of two-dimensional Hilbert space, the`-state
QKD protocol can be experimentally implemented with the
help of the standard QKD schemes, based on coding a qubit
with photon polarization. Demonstration of the nonthreshold
property of the infinite-dimensional̀ -state QKD protocol
will, however, require some novel experimental solutions.
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