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Entangling quantum measurements and their properties
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We study the mathematical structure of superoperators describing quantum measurements, including the
entangling measurementhe generalization of the standard quantum measurement that results in entangle-
ment between the measurable system and apparatus. It is shown that the coherent information can be effec-
tively used for the analysis of such entangling measurements whose possible applications are discussed as well.
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[. INTRODUCTION considering a more general set of staéer the quantum
measurement, which takes into account the created entangle-

Experiments in the field of quantum information process-ment in the object-pointer system after the measurement. We
ing and engineering, a new emerging interdisciplinary fieldwill call such a measurement antanglingmeasurement.
of science[1], require the acquisition of information about Note that the entangling measurement introduced here is
the quantum systen(, hereafter, the “object) by means of qualitatively different from the measurement transformation
an apparatus that producesnaasuremeri2—4]. During the  defined in Ref[11], where it is introduced in the form of a
measurement, the object quantum system and apparatus imitary transformation, and from the transformation defined
teract with each otheiand with the environment or the “ref- in Refs.[12,13, where the quantum properties of states in
erence” system As a result, the apparatus acquires essenthe bipartite system object-pointer are not considered. Also,
tially quantum information initially contained in the it is worth noting that the measurement transformations in
measurable quantum system. the bipartite system are clearly related to the characterization

The measurement procedure and the structure of the ref transformations in the bipartite setting Alice-Bob re-
lated measurement transformation may vary essentially. Faitricted by physical causality relatiofs4].
example, in quantum optics tlwwherentmeasurement trans-  One of the fundamental properties of a measurement
formation is used5,6]. In applications to the emerging field {ransformation is that the resulting state of the bipartite sys-
of quantum information processing and quantum computingiem gbject-pointer does not depend on the initial state of the
quantum measurement can alsp be considered as an eﬁec“é(ﬁparatus. In case of an entangling measurement, this prop-
tool for realizing quantum algorithnig]. Although quantum erty, which makes the transformation irreversible, distin-
measurement procedures can vary significantly for diﬁere”buishes it from reversible transformations of quantum en-
applications, it is worth selecting and examining_mathemgtitang|ement, which play a fundamental role in quantum
cal forms of common types of measurement, their propertie§ntormation processinfil] and can be realized with the help
and areas of possible applications. of a unitary transformation applied to the bipartite system.

In this work, we examine a class of quantum measure- |, quantum information theory, entanglement is one of the
ments completely preserving the initial concept of quantumey concepts used for characterization of quantum states of a
meaSlZJrement as the wave function collapse—{pn pipartite setting. It determines the quantum specifics of
=lcql%[n)} [8,9], i.e., the transfer of an initially pure state ppysjcal interaction on which its practical applications such
into a (T.u.xed ensemble of pure orthogonal stdies with as quantum computing and quantum cryptography rely
probabilities p,. We call such a measurementstandard  [1 15). For a bipartite system object-pointer in a pure state
measurement. The initial coherency in the object sysiem yescriped by a joint wave functioti,y, there is a unique
the initial wave function=Xcy|n) between the eigenstates gefinition of the degree of quantum entanglement as the en-
0{ th? rrreasgr_able ya;iabk=2¢n|n)<n|) is therefore Cﬁ_m' tropy of separate density matric&p”)=S(p"), where

etely lost. Since it happens fany quantum statey, this  ~a_ + “M_ +
Enean); that the object qﬁgntum sygtgm is completeeb:twan- P7=Tru Yaman andp™ =Tra Yamiam - However, for the
. . case of mixed states there is no unique valid definition of the
tized i.e., the only §ubset of. orthogongl statp$ out of all degree of entanglement
the system stateg is left. This subset is equivalent to a set In this connection, it is worth noting that the entanglement

of classical events. The final states of the apparatus can th%ri'_n quantum states created here is due to the above-specified

be cha:ragteriz”ed by a measurable variddlewhich we will - jternative choice of the quantum measurement procedure.
call a “pointer” [10]. After the measurement, the pointer has one can even assume that the characterization of the degree
the same values as those Af of entanglement as a derivative from the transformation mea-

The generalization of this concept discussed here lies isurement structure realized by an apparatus can give some
additional information about the physical contents of the en-
tanglement concept.

*Email address: grishan@comsim1.ilc.msu.su In Sec. Il, we give precise mathematical definitions of
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FIG. 1. Special cases of a quantum measurentanStandard measurement in the bipartite setting “quantum object—classical pointer”:
the wave functiony and independent state “2” of the classical apparatus transfer into the statistical mixture of totally correlatgd)states
of the bipartite systenAM with probabilities|c;|? (i=1,2). (b) An entangling measurement in the bipartite setting “quantum object—
quantum pointer” for the entanglement matRy =1 (Sec. ll): an independent pure state of the bipartite system transfers into an entangled
state, which is the coherent superpositml)|1)+c,|2)|2).

both standard and entangling measurement transformationiis (there is no dependence @n which indicates indepen-
special cases of which are considered in Sec. Ill. We describgence from the initial state of the pointer

the general structure of a quantum measurement superopera-The initial states of the bipartite system “quantum object
tor and specify structure of the entanglement matrix and theystem-apparatus” are described by the joint quantum-

entangling measurement superoperator in Sec. IV. The digiassical distributiong(w) defined as the linear operators in
cussed formalism is clarified by an example of a two-the direct producH,® Ay of the Hilbert space of the quan-

whether an entangling measurement can be used for an ep: . L : S N (i
tanglement transfer in various applications of quantum infor—\r}anable' They obey the positivity requiremer(.)=0 (i.e.,

mation processing. We prove that it cannot be used for th&¥|P(#)|#)=0 for anyy and allw) and the normalization
entanglement transfer from a bipartite system to another ongonditionX , Tr p(x)=1, and are transformed with the help
We consider the quantitative characteristics of entanglemergf superoperato(l) as

in Sec. VI arguing that the coherent information is a valid

tool for characterizing the entanglement created in the bipar- SON) = M) o) = PAYCLPA. (2
fite SyStem object pointer p(u)=p(N)=2 M\ wp(w)=2 Pla(wP. @

Here we restrict our consideration to the class of “direct”
measurements that are described by the orthogonal projectors

P2, having in mind the fundamental character of this sub-
Following the traditional quantum measurement postulatelass of all possible measurements. More general measure-

[2—-4,9, the process of quantum measurement of a quanturments can then be smoothly handled in the open systems

object systenA that lives in Hilbert spacél 5 by the classi- framework.

cal pointer variabléV leads to establishing the resulting state  The linear transformation discussed above is defined on

of the systemA. In this state the measurable physical vari-the direct productCay=C(Ha)®C(A),) of the quantum-

able described by a quantum operafortakes one of the mechanical operator algebrality and the algebra of classi-

range of possible values and the apparatus’ classical vari- cal functions on the set,. This transformation yields the

ableM coincides with that valueM =\. We then can sim- pointer value\ (independent of its initial valueg) for the

plify the description of the apparatus preserving only thedensity matrices of the pure stai€= 4" with wave func-

initial (w) and resulting X) values of the pointer variable. tions y of the measurable quantum system, which lie in the

After this simplification, the measurement transformation ineigensubspaceb, corresponding to the value of the mea-

the bipartite system “quantum object-pointer” is represented . apie variable, i.eP2y= e ®, . If the measurement is a

by the superoperator guantum transformation along th‘_a Ualkomplete one, i.ed, are one dimensional, then transforma-
tum variables of the measurable systénand the classical . ; . Ap o
tion (2) for an arbitrary density matriy” in a joint initial

conditional probability distribution along the classical

II. MATHEMATICAL DEFINITIONS OF QUANTUM
MEASUREMENT TRANSFORMATIONS

pointer variablesu of the apparatuf16]: state of the fornp(u) = p"® p(u) describes the output mix-
ture of the corresponding pure sta@%zl)\)(M with prob-
M(\|p)=PRrOPY. (1)  ability weights p(\)=(\|p|\). A scheme clarifying the

measurement transformation structure in the described

A symbolic representation of the quantum state transfordu@ntum-classical system is shown in Fig. 1.
mation operators is used here, in which the substitution sym- '€ problem of the physical realizability of a quantum

bol © is to be substituted by a transformed operator. TheYStem measurement procedure with the help of a classical
ratorsP® are the orthogonal proiectors onto th b system has attracted considerable interest in the literature,

operatorsr, are the orthogonal projectors onto the Sub-p, + some principal questions related to this problem are still

spaces with eigenvalua of the measurable variabl&  ynder discussiofil7—20. A simple example clarifying the

=3I\P%, wherex enumerates the final states of the apparakey mechanisms for realizing the measurement procediire
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in a closed physical system described quantum mechanicalgubspaces irH,, built on the eigensubspaceb, of the
to preserve the quasiclassical character of the apparatus’ vagigenprojector$® of the apparatus’ variabl¥l is used for
able, is given in Ref| 16]. the description of the pointer variablz However, besides

Along with the maxma]ly simplified description of the the variables commuting with the pointer varialble there
measurement procedure in the form of superoperétpr

which takes into account the physical structure of the appa@'® @lso off-diagonal variables of the formN
ratus only in the form of the classical variabte=\, amore =2y ,N,[M)M(u|" that do not commute wit and can
detailed description must at least include the quantumpotentially lead to the essentially quantum nature of the ap-
mechanical variables of the apparatus that are complimentafgaratus even at macroscopic level.

to the classical variable. In this case, a minimal extension of The fact that in a real macroscopic system there exist
the model leads to the replacement of the classical apparatugriables, which do not commute witfPi)\" , Is not a paradox.
pointer with a quantum one, which lives in the spatg In physics, pithy examples of such quantum variables in qua-
with dimensionD equal to the number of values of the mea- siclassical systems arise, for instance, when considering

surable variable. polyatomic moleculegan effective two-level model of mo-
Accordingly, superoperatdi) is replaced with the fully lecular chirality related to the chiral degree of freedom of a
quantum superoperator of tilstandardmeasurement chiral molecule having stable enantiomers can serve as such

a pithy example[22,23)). Similar subsystems can be ex-
tracted in the mathematical description of a complete set of
potentially possible states of any macroscopic system. Typi-
cally, their quantum nature is not essential because of the
small values of energy quanta corresponding to the transi-
tions between discrete energy levels.

MAMzg (PMTr,0)® (PROPL). 3)

Here theP? are the same as in E¢l) and theP) are the
one-dimensional projectors corresponding to the values On the contrary, there is also a number of macroscopical

the apparatus’ vanabIN.I:E)\P_xM. quantum systems, i.e., quantum dots, superconducting Jo-
Projecting the density matrix of the measurable quantumyephson junctions, and others, which are considered as em-

system described by the operatét$ leads to the transfor- bodies of qubits in quantum information processifg

mation of the system’s state into an incoherent superpositiowhere the quantum nature of the apparatus can be essential.

of respected states with explicitly determined valhesf the  Specific models of apparatus can, obviously, limit both the

variableA. Operation Ty;® reflects the independence of the quality and fidelity of reproduction of the measurement

final state of the apparatus from its initial state and the protransformation(3) due to the macroscopic nature of the ap-

jectors PM describing the resulting quantum state of theParatus. However, as follows from the analysis of numerous

pointer after the measurement, which correspond to the me pecmc.moldels in the literature, such limitations do not for-

oA id realizations of such measurement models.

sured values.. In the general case, the projectét¥ con- _ : . “AAM

sidered in the real physical space of the apparatus are multj- An initial density matrix of the form;_) ©p~ IS trans-

dimensional; this corresponds to macroscopic systems wit rmed by superoperatd8) into the density matrix

numerous internal degrees of freedom of the apparatus.

However, if these internal degrees of freedom do not affect ;AMZE (|5/£,3A|5/£)® |5XM (4
essentially the interaction of the apparatus with the measur- A

able quantum system, the measurement can be adequately A
described in the minimal Hilbert spatt, . characterizing the state with the coinciding variables *“

Superoperatoi3), being physically realizable, is com- =M," i.e., in strict form (A—M)p"M=0. This state is an
pletely positive[21] and, additionally, is Hermitian with re- incoherentstatistical mixture of quantum states characteriz-
spect to the scalar produgb{,p,)=Tr p; p,. Then, its par- ing each of the variables. The transfer of information be-
ticular property of idempotency, i-e-rM,ZAM:MAMv tween the quantum systefand apparatuM is realized in
identifies an orthogonal projector onto the subspace of unsuch a state through the classical variableQuantum fluc-
perturbed states of the bipartite system “object-pointer.”  tuations therefore exist only virtually as unAcertairlty in the

In the description of the measurement procedure givemphysical variables, which do not commute wAlandM and
above, the quantum nature of the apparatus is not essentiale therefore not determined explicitly.
though it is virtually present in its mathematical description. The above-described semiclassical concept of the mea-
Only the pointer variable is used and the off-diagonal quansurement is not a general of&4,24. Moreover, generation
tum operators are simply not considered. Mathematically, ibf entanglement by means of quantum measurement has
means that we consider a reduced algebra of quantum everiieen a topical issue for the last decd@8—29. Therefore, a
B of the quantum probabilistic spacél (B,P), whereH is  generalization of the standard measurement approach can es-
the Hilbert space of all states allowed in the quantum systengentially extend the concept of quantum measurement.

B is the algebra of its subspacésCH identified by the For example, an essentially quantum isometst fixed
orthoprojector®(€2), andP(Q) =Tr P(Q)p is the quantum  #w) transformationya® g — (k| #a)alk)alk)y Of an ar-
probability distribution defined with the help of the density bitrary pure state into an entangled state can be interpreted as
matrix. In this quasiclassical case, the algebra of orthogona measurement of the variate= 2\ | k) (k| o with the help
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of the apparatus’ variablél=3\,|k)y(k|y. The corre- the chosen object basis, accompanied by multiplication of
sponding generalization of the measurement superoperat§te corresponding elements of the initial density matrix of

(3) has the form the object by those of the entanglement matrix.
Mo=> (BN Try0) e (PAOPA), (5) lil. SPECIAL CASES
ki
Let us assume that the initial state of a quantum system is
where theP,,=|k)(I| are the one-dimensional projectors & pure state, i.ep”= yaya With ya=(cy, ... Cp), and the

from |I) onto |K) in the respective Hilbert spacé$, and Mmeasurement procedure is complete, which means that all
Hy . For a pure statp”= ) 4|, this transformation en-  the projectors,; are one dimensional. Then, it follows from
sures the resulting pure entangled state of the composite sy&d. (7) that

tem. Note, however, that this does not mean the absence of

dequantization of the initial state, because the latter is repre-

~AM _ _ s
sented in the final state only by the diagonal orthoprojectors p —Ek il [KY{CKI], ”k»_Z el (8)
Pp. and P .
The above formulas for the measurement superoperatoghere thex,, e,=(e., . .. .exp) are the eigenvalues and

Man and M, can be generalized to an intermediate repreypq respective normalized eigenvectors of the mafrix

sentation of the form =Ryp=RuCiC] . This means that the pure state is trans-
formed into an incoherent mixture of pure entangled states of

M=E Rk|(I5,'l’|' TrM®)®(I5{jk® Isﬁ), (6) the bipartite system object-pointer, which are orthogonal to
ki each other and have different degrees of entanglement that
depends on the entanglement and density matrices. For the

which describes aantangling measuremewith the Hermit- ~
gingd case ofp”=ko)(ko|, we havec,= Sk, and the correspond-

ian entanglement matrix . This matrix is chosen to ensure
the complete positivity and normalization condition for theing joint density matrix pM= ko) (ko|*®|ko)™(ko|™,
measurement transformation. To our knowledge, ®{.is  which coincides with the density matrix resulting from
the most general form of the entangling measurement supethe standard measurement,, of the observable
operator based on the linear combination of the input-outpuf = s | KYA(k|A. For the case of puremaximum
projectors, which is compatible with the ideal measurement]svmcer,[(,]linty state pA=(LD)S|K)(k|, we have pAM

concept. N =3(Ry /D) KON with |[k))=|k)|k), whereRy /D is
Al Ry =6y, EQ. (6) simplifies to the standard quantum the object—point?r«density mat>r>ix in>the> basis of the dubbed
measuremenB), if one identifies the projector sets with cor- (“cloned”) states
responding indicek and \. The projectorsPyy in Eq. (6) For the entanglement matri; = ;; , all the eigenvalues
characterize information in the quantum system to be mea;, —|c,|2 in Eq. (8) are represented by the eigenvectegs
sured and its statistical properties are determined by the den- 5, and the degree of entanglement of each of [{ig)
sity matrix p”. Information that is finally measured by the states is equal to zero. Thus, a completely incoherent mixture
apparatus is represented by the projecflls and its statis-  of states of the measurable variaBle: S\ ;|i)(i| with deter-
tical properties are determined only by the density maifix ~minedX; is formed.
and are invariant with respect to the choice of a basis in the For the entanglement matri®;;=1, which has the only
state spacél,, of the apparatus. nonzero eigenvalueq,=1 and respective eigenvecte;
The measurement transformatit8) creates an entangle- =C;i, Eq.(8) gives us a pure state, which is represented by
ment in the bipartite system quantum object systemihe single vector
apparatus whose value may vary between zero and its maxi-
mum value(which depends o).

Taking the basis set of the density matrices in the form ||k>>=2 cili)]i).
p"®pM, we obtain for the transformation of the joint density
matrix The statd|k))==Xc;|i)|i), corresponding to the state in Eq.

(8), coincides with the state formed after theantum dupli-

@ cationtransformatior30]. The degree of its entanglement
can be estimated as the entrofyP] of the probability dis-
tribution P(i) =|c;|? of all possible values; of the measur-

For the initial density matrix of the composite system of gple variable. We camlwaysreceive a maximum possible

general formp”B, the resulting matrix has the same fofm, degree of entanglemeli=log, D by choosing the measur-

keeping in mind that the matrix elemenif; correspond to  aple variableA as having maximum uncertainty in the state
the partial density matrig”=Trgp”B. Therefore, the density #, which corresponds to the vector representatign
matrix of a composite system is formed in the process of=1/\/D and the uniform distributiony— P(i)=1/D. There-
measurement as a result of the dubbjky*—|k)A|k)* of  fore, for the maximally entangling measurement, vacuum

- ~A ABA - BM
pMM=MprapM=2 RapkPRePy .
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quantum fluctuations of the measurable variable are transhe standard measuremeht,y, , which reveals in the spec-
ferred into the corresponding entanglement of the bipartitérum structure of the corresponding matrices represent-
system object-pointer. ing M.

For the general case of a mixed initial staje As an example, let us consider a two-level system with
=3 p|1){1], an incoherent mixture db orthogonal(at fixed dimH,=2 for which the positivity criterion gives the fol-
) sets of entangled statgg,|)) is formed. These sets, how- lowing general form for the entanglement matrix:
ever, are not necessarily orthogonal at different valuels of
but this nonorthogonality is largely of formal character and q )
physically does not mean nonorthogonality of the states of R= g 1)’ lal*<1. (10)
one and the same Hilbert spaces. When one considers an
incoherent mixture of states, phase uncertainty is due to an pe eigenvalue equation for the measurement super-
additional degree of freedom, and incoherence means that Yperator
consider physically distinguishable (orthogonal [31,32)
states. In fact, the orthogonal wave functiahg correspond MpAM= ) HAM (11)
to two physically distinguishable stateg that describe dif- P P
ferent phases in the composite states|a)|i), ¢=|B)|j)
even for nonorthogonal states and 8. Keeping this in
mind, in a more detailed quantum description of a composite
system, which includes all physically valuable degrees of
freedom, quantum operators of the corresponding physical >, >, Ryph PA@PN=1Y, > poM PAoPM.
subsystems do commute. kibm kI mn

can be solved analytically once we have expressed it in the

AM
—>Rk|< > Pkmﬂ) SkmOin
IV. GENERAL STRUCTURE OF THE QUANTUM ~®
MEASUREMENT SUPEROPERATOR AND ANALYSIS

OF A TWO-DIMENSIONAL MODEL

Let us first define the constraints imposed on the quanturfror D=2, the dimension of the problem is limited to 16
measurement superoperator by the normalization conditiopossible values of the four-dimensional indebmn of the
and positivity property. From Eq(7) we obtain TpAM “density matrix” (in the eigenvalue problem, in addition to
:ZRkkPﬁ\k. which, with an arbitrary choice q?fA, immedi- physically valuable density matrices, arbitrary operators are

ately gives the normalization conditid®,=1. The positiv- considered, as wgl

) . . e On account of the vanishing off-diagonal elements in the
ity requirement and, simultaneously, the complete positivity . . AM )

) . o - A transformed density matryaqf,mn on the left side of the above
properties require the positivity of the matrp@z(R,dpkl)

, N A A _ equation, we find that eight right eigen-null vectefy, , k
for an arbitrary positive matrixp”=(pj;). Then, using the —1,...,8 corresponding to the eigenvalue=0 are de-
spectral representation of both these matrices, one caf}ipeq by the following operators:
readily show that a necessary and sufficient condition for
this requirement is the positivity of the entanglement ~0k o BM _
matrix R=(Ry). 20k _ PA©PL, k=1234
i EAM™ | ~gr_ =~ (12

A repeated entangling measurement, i.e., the repeated ap- pXePY, k=5,6,7,8,
plication of the same measurement superoperator on the
same apparatus-system Hilbert space, leads, on account ghich have zero diagonal matrix element§H ., along M
the measurement superoperat6l, equality Ri=1, and i opitrary density matricep’<. Freedom in choosing
vam;hmg of the'off—d|agonal elements Of. the pointer denSItythem is due to the eightfold degeneracy and related to the
matrix after tracing out O, to the relation arbitrary choice of four linearly independent basis vectors
(12) corresponding to the related basis operafelfs, P of

M?2=Mppy - (9) the pointerM.
The other four zero eigenvectors satisfy the relation

prh = —pt™, and have the form
en

— AM
=N Pkimn-

Therefore, a repeated entangling measurement leads to
tanglement destruction and the resulting transformation is
equal to the standard measurement. This entanglement de-
struction in the initial state of the quantum object-pointer is .
due to a “resetting” of the apparatus needed to achieve inwith arbitrary linearly independent density matriges .
dependence of the final system-apparatus state from the ini- Finally, for two nonzero eigenvectors with=1 we have
tial apparatus state. a pair of linearly independent functiopg= &y , oy, satisfy-

Equation(9) is valid for any entangling matriR, i.e., the ing the relations pﬁi'ﬁnnz PkOk1Okmdn and corresponding
entangling measurement is the ambiguous square root of operators

ek =pke (PM—PM), k=9,10,11,12, (13
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PA o PM istic creation of spatially separated entangled quantum sys-
alk | T t is a difficult problem to solve. By contrast, pairs of
eAMT) ap ay (K=13,14. (149 ems Is a di p . . By ' P

P5® P> entangled subsystems exist naturally and spontaneously

within many spatially localized physical systems.

These two operators provide a basis of the convex set For example, conservation of the total momentum of an
- - . . atom is not related to the separate conservation of its com-
p eri+ (1—p)erst (0<p=<1) of the density matrices, P

hich t ch din th (1 ¢ " ponents, orbital and spin momenta. Thus, the eigenstates of
which aré not changed in the measurement transtormationyne a1om are, in the general case, entangled states related to

The last two linearly independent operatom;  subsystems describing orbital and spin momenta separately.
=PLeIM and e316=p2 o™ are the eigenoperators with Another example is laser excitation of rovibrational states in
eigenvalue equal to zero only Bf, = &, when the measure- molecules, which results in the entanglement between the
ment is a standard measurementt an entangling measure- Vibrational and rotational degrees of freedom.
ment. In the general case, the superoperatbriacks two Now, the following question arises, “can thesaturally
eigenvectors, because it is not described by a matrix ogntangled states be used for a transfer of their entanglement
simple structure similar to the single-mode fermion annihila-onto an entanglement of spatially separated quantum systems

tion operatoa= (3%), which has a single nonvanishing right With the help of an entangling measurement?”

eigenvectore,= (1,0) [33]. Accordingly, Eq.(9) is realized To answer this q.utla.stion, IetAuAst\:A?\lnsiAdAeBr f?‘iﬂ’ SX?\‘%
as the relatiora®=0, which washes out dependence of theM: @nd N with an initial statep =p"®p ®p . We
squared operator on the entangling parameter assume that two of then and B, are in the initially en-

The corresponding linear subspargdis +c, 8016 con-  tangled statep”B, whereas systemdl and N are initially
tains only density matrices, which have no physical meaningndeépendent and spatially separated frérB. We will then
Nevertheless, this subspace cannot be excluded from tH1€CK if it is possible to transfer entanglement from the bi-
complete 16D space, because it is included into the cone da'lite systenA-B onto the bipartite syster-N by apply-
all positive Hermitian density matrices. ing two independent transformat!omz(lA and Mg to the_

The entangling measurement superoperator matrix in theUoSystem#\-M andB-N, respectively. The corresponding
wni c oAk joint superoperator has the form
eigenbasis”ex), has the form

Mg®Ma= 2, RiaRel Pr® (PO PR TrO)]

100 0 0 0 O
0100 0 0 O o[PA®(PMOPM O],
o of © 0 o 0o o .
- where system#! andN are treated as pointers for the mea-
M=10 0 0 0 0 g 0], (15  surements of systemA and B. The resulting state of the
O 00 0 0 0 g bipartite systenM-N can then be obtained by tracing GuB
N that leads to the transformatiof® — 8, Pli— 6 and,
0 0o 0 0 0 O on account oR,=R,,, can be written as
0 00 0 0 0 O

ﬁMN:EKD (ﬁEk;,Nﬁ)Ek)@)En: (PR™ P
where O is a 10<10 zero matrix, and and 0 are ten-
component zero bra and ket vectors, respectively. In matriyhis means that simultaneous measurements in the systems
(15), 4th and S5th lines correspond to the transversal andB always produce twancorrelateddequantized states
transversal basis operators and two bottom lines correspong he systemaM and N if any quantum correlations with

to the two noneigenoperatofs,®1/D, P,,®1/D. The sub-  other systems are neglected. Therefore, an entangling mea-
spaces corresponding to matiik5) are 2D invariant, 12D  surement cannot be used for entanglement transfer onto spa-

zero, and 2D improper subspaces. tially separated systems.
V. CAN ENTANGLING MEASUREMENT BE USED VI. QUANTITATIVE CHARACTERISTIC OF
FOR ENTANGLEMENT TRANSFER? ENTANGLEMENT DUE TO ENTANGLING
MEASUREMENT

Many applications of quantum information processing al-
gorithms, such as practically interesting cryptographic proto- In accordance with Secs. Il and Ill, the entangling mea-
cols, require realization of a pair of spatially separated ensurement superoperator creates entanglement in the bipartite
tangled quantum systerh%,10]. They serve as resources for system object-pointer, which does not depend on the initial
guantum information engineering and developing technolostate of the pointer and is defined only by the entanglement
gies for their creation is of prime importangks]. Determin-  matrix and the initial state of the quantum system in the
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eigenbasis of the measurable variatdea set of commuting  {ansformation  for the coherent informatiorﬁ[f;’\"]

variables. Generally, two types of created entanglement due—S[(N@Z)\I’AR\I’XR], whereW ,, defines the initial state of

to entangling measurement described by the respective cg- . .
herent informatior{i.e., preserved entanglemef84,35) are the input and the reference systedncorresponding to the

. . o . i H H A 7
of interest to us: one-time entanglement describing one-timgensity matrix at the inpyi”, always yields a zero value due
statesf)AM of the systemA and the apparatusl, and two- to the fact that both density matrices are diagonal and their

time entanglement describing how the initial state of the sysdiagonal elements are equivalent. _
tem A is linked to the resulting state of the apparakisn Therefore, entanglement after the measurement is created

only for one-time states, but two-time entanglement does not

terms of the initial density matriy, and the superoperator . ) o
v Pa perop exist because of the destruction of initial coherency.

N of a two-time channeA— M [see Eq(17)] [30].

In the first case, for the one-time chandek M we have
the entanglement measure =55 pM]1— S pM] (which is
equal toS pA1— 9 pM]) with pAM given by Eq.(7). Ex-
pressing the entropy via the matrix elemeR{sp,,, on ac-
count of R, =1, we obtain

VII. CONCLUSIONS

In conclusion, we have studied a natural mathematical

generalization of the standard quantum measurement on the
E=S(p)]1— S (Rapi) 1, (16  entangling quantum measurement, which creates an en-
tanglement between the measurable quantum system and the

where the entropieS are calculated for the diagonalized and apparatus in the bipartite setting quantum object-pointer. The
complete density matrics, = Ry py, respectively. entangling measurement procedure is defined, as well as the

The degree of entanglement created after the entanglingfandard measurement procedure, by the choice of measur-
measurement defined by E@.6) is always positive in con- able variables and, additionally, by the entanglement matrix.
trast with the coherent information, which can be negativeSuch a procedure can be physically realized with the help of
for an arbitrary channel. Such an induced entanglement var&n apparatus that can have either microscopic or macroscopic
ishes for diagonal density matrices, which means that coherature. In the latter case, we deal with an “ideal” measure-
ence between the measured states, which is transferred aftaent transformation.
the measurement onto the pointer, is absent before the Repeated entangling measurement results in the standard
measurement. incoherent measurement transformation. Thus, the entan-

For the case of a pure state with maximum indeterminategling measurement superoperator can be represented by the
ness of the measurable variable, i@,=1/D, an induced ambiguously determined square root of the standard mea-
entanglement due to the entangling measurement has th@rement superoperator. This ambiguity, as has been illus-
form trated in the two-dimensional example, is due to the incom-

pleteness of the corresponding superoperator’s eigenvector
E=log, D+, rylog,ry, system.

The entangling measurement, as we have proved, cannot
be used for entanglement transfer from a bipartite system to
another one.

It has also been shown that the entangling measurement
creates a one-time entanglement in the bipartite system quan-
measurement. tum object-pointer whose degree depends on the entangle-

The superoperator of the two-time chandel:M, i.e., a ment matrix and the initial state of the quantum system and
channel that links the initial state of the quantum system anéf Pounded above by the logarithm of the number of measur-

where O<r, <1 are the eigenvalues of the normalized en-
tanglement matribR,,/D. For the maximum coherency, i.e.,

for Ry=1, we obtain the maximum possible value
E=log,D of the entanglement due to the entangling

final state of the apparatus, has the following fd0]: able values. The degree of two-time entanglement is always
equal to zero due to the complete decay of initial coherency.
N=Try M(O®p"), (17)  This means that only dequantized information about the ini-

tial state of the quantum system is preserved.

where the substitution symbol®” describes dependence on It is argued that the coherent information is a valid tool
the initial state of the quantum systesft. The channel de- for characterizing entanglement created in the bipartite sys-
fined this way allows one to use the original definition of thetem quantum object-pointer.
coherent information36].

On account of the measurement superoperator structure
(6), superoperatofl7) does not depend on the initial point- ACKNOWLEDGMENTS
er's statep™. Thus, with the help of the transformatiobt
we can readily conclude that tracing out the initial state leads This work was supported in part by the Russian Founda-
to the diagonalization of the output density matpi%;p’k*k tion for Basic Research under Grant Nos. 01-02-16311, 02-
and its dependence solely on the diagonal part of the initia03-32200, and by INTAS under Grant No. INFO
density matrix of the measurable quantum system. Such @0-479.
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