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Entangling quantum measurements and their properties
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We study the mathematical structure of superoperators describing quantum measurements, including the
entangling measurement—the generalization of the standard quantum measurement that results in entangle-
ment between the measurable system and apparatus. It is shown that the coherent information can be effec-
tively used for the analysis of such entangling measurements whose possible applications are discussed as well.
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I. INTRODUCTION

Experiments in the field of quantum information proce
ing and engineering, a new emerging interdisciplinary fi
of science@1#, require the acquisition of information abou
the quantum system (A, hereafter, the ‘‘object’’! by means of
an apparatus that produces ameasurement@2–4#. During the
measurement, the object quantum system and apparatu
teract with each other~and with the environment or the ‘‘ref
erence’’ system!. As a result, the apparatus acquires ess
tially quantum information initially contained in th
measurable quantum system.

The measurement procedure and the structure of the
lated measurement transformation may vary essentially.
example, in quantum optics thecoherentmeasurement trans
formation is used@5,6#. In applications to the emerging fiel
of quantum information processing and quantum comput
quantum measurement can also be considered as an effe
tool for realizing quantum algorithms@7#. Although quantum
measurement procedures can vary significantly for differ
applications, it is worth selecting and examining mathem
cal forms of common types of measurement, their propert
and areas of possible applications.

In this work, we examine a class of quantum measu
ments completely preserving the initial concept of quant
measurement as the wave function collapse,c→$pn
5ucnu2,un&% @8,9#, i.e., the transfer of an initially pure stat
into a mixed ensemble of pure orthogonal statesun& with
probabilities pn . We call such a measurement astandard
measurement. The initial coherency in the object system~in
the initial wave functionc5(cnun& between the eigenstate
of the measurable variableÂ5(lnun&^nu) is therefore com-
pletely lost. Since it happens forany quantum statec, this
means that the object quantum system is completelydequan-
tized, i.e., the only subset of orthogonal statesun& out of all
the system statesc is left. This subset is equivalent to a s
of classical events. The final states of the apparatus can
be characterized by a measurable variableM̂ , which we will
call a ‘‘pointer’’ @10#. After the measurement, the pointer h
the same values as those ofÂ.

The generalization of this concept discussed here lie
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considering a more general set of statesafter the quantum
measurement, which takes into account the created entan
ment in the object-pointer system after the measurement.
will call such a measurement anentanglingmeasurement.
Note that the entangling measurement introduced her
qualitatively different from the measurement transformat
defined in Ref.@11#, where it is introduced in the form of a
unitary transformation, and from the transformation defin
in Refs. @12,13#, where the quantum properties of states
the bipartite system object-pointer are not considered. A
it is worth noting that the measurement transformations
the bipartite system are clearly related to the characteriza
of transformations in the bipartite setting Alice-Bob r
stricted by physical causality relations@14#.

One of the fundamental properties of a measurem
transformation is that the resulting state of the bipartite s
tem object-pointer does not depend on the initial state of
apparatus. In case of an entangling measurement, this p
erty, which makes the transformation irreversible, dist
guishes it from reversible transformations of quantum
tanglement, which play a fundamental role in quantu
information processing@1# and can be realized with the hel
of a unitary transformation applied to the bipartite system

In quantum information theory, entanglement is one of
key concepts used for characterization of quantum states
bipartite setting. It determines the quantum specifics
physical interaction on which its practical applications su
as quantum computing and quantum cryptography r
@1,15#. For a bipartite system object-pointer in a pure st
described by a joint wave functioncAM , there is a unique
definition of the degree of quantum entanglement as the
tropy of separate density matricesS( r̂A)5S( r̂M), where
r̂A5TrM cAMcAM

1 and r̂M5TrA cAMcAM
1 . However, for the

case of mixed states there is no unique valid definition of
degree of entanglement.

In this connection, it is worth noting that the entangleme
of quantum states created here is due to the above-spec
alternative choice of the quantum measurement proced
One can even assume that the characterization of the de
of entanglement as a derivative from the transformation m
surement structure realized by an apparatus can give s
additional information about the physical contents of the
tanglement concept.

In Sec. II, we give precise mathematical definitions
©2003 The American Physical Society09-1
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FIG. 1. Special cases of a quantum measurement.~a! Standard measurement in the bipartite setting ‘‘quantum object–classical poin
the wave functionc and independent state ‘‘2’’ of the classical apparatus transfer into the statistical mixture of totally correlated stateu i & ^ i
of the bipartite systemAM with probabilities uci u2 ( i 51,2). ~b! An entangling measurement in the bipartite setting ‘‘quantum obje
quantum pointer’’ for the entanglement matrixRi j [1 ~Sec. III!: an independent pure state of the bipartite system transfers into an enta
state, which is the coherent superpositionc1u1&u1&1c2u2&u2&.
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both standard and entangling measurement transformat
special cases of which are considered in Sec. III. We desc
the general structure of a quantum measurement supero
tor and specify structure of the entanglement matrix and
entangling measurement superoperator in Sec. IV. The
cussed formalism is clarified by an example of a tw
dimensional~2D! model. In Sec. V, we address the questi
whether an entangling measurement can be used for an
tanglement transfer in various applications of quantum inf
mation processing. We prove that it cannot be used for
entanglement transfer from a bipartite system to another
We consider the quantitative characteristics of entanglem
in Sec. VI arguing that the coherent information is a va
tool for characterizing the entanglement created in the bip
tite system object-pointer.

II. MATHEMATICAL DEFINITIONS OF QUANTUM
MEASUREMENT TRANSFORMATIONS

Following the traditional quantum measurement postu
@2–4,9#, the process of quantum measurement of a quan
object systemA that lives in Hilbert spaceHA by the classi-
cal pointer variableM leads to establishing the resulting sta
of the systemA. In this state the measurable physical va
able described by a quantum operatorÂ takes one of the
range of possible valuesl and the apparatus’ classical var
ableM coincides with that value:M5l. We then can sim-
plify the description of the apparatus preserving only
initial (m) and resulting (l) values of the pointer variable
After this simplification, the measurement transformation
the bipartite system ‘‘quantum object-pointer’’ is represen
by the superoperator quantum transformation along the q
tum variables of the measurable systemA and the classica
conditional probability distribution along the classic
pointer variablesm of the apparatus@16#:

M~lum!5 P̂l
A( P̂l

A . ~1!

A symbolic representation of the quantum state trans
mation operators is used here, in which the substitution s
bol ( is to be substituted by a transformed operator. T
operatorsP̂l

A are the orthogonal projectors onto the su

spaces with eigenvaluel of the measurable variableÂ
5(l P̂l

A , wherel enumerates the final states of the appa
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tus ~there is no dependence onm, which indicates indepen
dence from the initial state of the pointer!.

The initial states of the bipartite system ‘‘quantum obje
system-apparatus’’ are described by the joint quantu
classical distributionsr̂(m) defined as the linear operators
the direct productHA^ LM of the Hilbert space of the quan
tum system and the setLM of classical values of the pointe
variable. They obey the positivity requirementr̂(m)>0 ~i.e.,

^cur̂(m)uc&^0 for anyc and allm) and the normalization
condition(m Tr r̂(m)51, and are transformed with the he
of superoperator~1! as

r̂~m!→ r̂~l!5(
m

M~lum!r̂~m!5(
m

P̂l
Ar̂~m!P̂l

A . ~2!

Here we restrict our consideration to the class of ‘‘direc
measurements that are described by the orthogonal proje
P̂l

A , having in mind the fundamental character of this su
class of all possible measurements. More general meas
ments can then be smoothly handled in the open syst
framework.

The linear transformation discussed above is defined
the direct productCAM5C(HA) ^ C(LM) of the quantum-
mechanical operator algebra inHA and the algebra of classi
cal functions on the setLM . This transformation yields the
pointer valuel ~independent of its initial valuesm) for the
density matrices of the pure stater̂l

A5cc1 with wave func-
tions c of the measurable quantum system, which lie in t
eigensubspacesFl corresponding to the valuel of the mea-
surable variable, i.e.,P̂l

Ac5cPFl . If the measurement is a
complete one, i.e.,Fl are one dimensional, then transform
tion ~2! for an arbitrary density matrixr̂A in a joint initial
state of the formr̂(m)5 r̂A

^ p(m) describes the output mix
ture of the corresponding pure statesP̂l

A5ul&^lu with prob-

ability weights p(l)5^lur̂ul&. A scheme clarifying the
measurement transformation structure in the descri
quantum-classical system is shown in Fig. 1.

The problem of the physical realizability of a quantu
system measurement procedure with the help of a class
system has attracted considerable interest in the literat
but some principal questions related to this problem are
under discussion@17–20#. A simple example clarifying the
key mechanisms for realizing the measurement procedure~1!
9-2
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ENTANGLING QUANTUM MEASUREMENTS AND THEIR . . . PHYSICAL REVIEW A68, 022309 ~2003!
in a closed physical system described quantum mechanic
to preserve the quasiclassical character of the apparatus’
able, is given in Ref.@16#.

Along with the maximally simplified description of th
measurement procedure in the form of superoperator~1!,
which takes into account the physical structure of the ap
ratus only in the form of the classical variablem→l, a more
detailed description must at least include the quantu
mechanical variables of the apparatus that are complimen
to the classical variable. In this case, a minimal extension
the model leads to the replacement of the classical appar
pointer with a quantum one, which lives in the spaceHM
with dimensionD equal to the number of values of the me
surable variable.

Accordingly, superoperator~1! is replaced with the fully
quantum superoperator of thestandardmeasurement

MAM5(
l

~ P̂l
M TrM( ! ^ ~ P̂l

A( P̂l
A!. ~3!

Here theP̂l
A are the same as in Eq.~1! and theP̂l

M are the
one-dimensional projectors corresponding to the valuesl of
the apparatus’ variableM̂5(l P̂l

M .
Projecting the density matrix of the measurable quant

system described by the operatorsP̂l
A leads to the transfor

mation of the system’s state into an incoherent superpos
of respected states with explicitly determined valuesl of the
variableÂ. Operation TrM( reflects the independence of th
final state of the apparatus from its initial state and the p
jectors P̂l

M describing the resulting quantum state of t
pointer after the measurement, which correspond to the m
sured valuesl. In the general case, the projectorsP̂l

M con-
sidered in the real physical space of the apparatus are m
dimensional; this corresponds to macroscopic systems
numerous internal degrees of freedom of the appara
However, if these internal degrees of freedom do not aff
essentially the interaction of the apparatus with the mea
able quantum system, the measurement can be adequ
described in the minimal Hilbert spaceHM .

Superoperator~3!, being physically realizable, is com
pletely positive@21# and, additionally, is Hermitian with re
spect to the scalar product (r̂1 ,r̂2)5Tr r̂1

1r̂2. Then, its par-
ticular property of idempotency, i.e.,M AM

2 5MAM ,
identifies an orthogonal projector onto the subspace of
perturbed states of the bipartite system ‘‘object-pointer.’’

In the description of the measurement procedure gi
above, the quantum nature of the apparatus is not esse
though it is virtually present in its mathematical descriptio
Only the pointer variable is used and the off-diagonal qu
tum operators are simply not considered. Mathematically
means that we consider a reduced algebra of quantum ev
B of the quantum probabilistic space (H,B,P), whereH is
the Hilbert space of all states allowed in the quantum syst
B is the algebra of its subspacesV#H identified by the
orthoprojectorsP̂(V), andP(V)5Tr P̂(V) r̂ is the quantum
probability distribution defined with the help of the dens
matrix. In this quasiclassical case, the algebra of orthogo
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subspaces inHM built on the eigensubspacesFl of the
eigenprojectorsP̂l

M of the apparatus’ variableM̂ is used for
the description of the pointer variableB. However, besides
the variables commuting with the pointer variableM̂ , there
are also off-diagonal variables of the formN̂

5(lmNlmul&M^muM that do not commute withM̂ and can
potentially lead to the essentially quantum nature of the
paratus even at macroscopic level.

The fact that in a real macroscopic system there e
variables, which do not commute withP̂l

M , is not a paradox.
In physics, pithy examples of such quantum variables in q
siclassical systems arise, for instance, when conside
polyatomic molecules~an effective two-level model of mo
lecular chirality related to the chiral degree of freedom o
chiral molecule having stable enantiomers can serve as
a pithy example@22,23#!. Similar subsystems can be ex
tracted in the mathematical description of a complete se
potentially possible states of any macroscopic system. T
cally, their quantum nature is not essential because of
small values of energy quanta corresponding to the tra
tions between discrete energy levels.

On the contrary, there is also a number of macroscop
quantum systems, i.e., quantum dots, superconducting
sephson junctions, and others, which are considered as
bodies of qubits in quantum information processing@1#
where the quantum nature of the apparatus can be esse
Specific models of apparatus can, obviously, limit both
quality and fidelity of reproduction of the measureme
transformation~3! due to the macroscopic nature of the a
paratus. However, as follows from the analysis of numer
specific models in the literature, such limitations do not f
bid realizations of such measurement models.

An initial density matrix of the formr̂A
^ r̂M is trans-

formed by superoperator~3! into the density matrix

r̂AM5(
l

~ P̂l
Ar̂AP̂l

A! ^ P̂l
M ~4!

characterizing the state with the coinciding variablesÂ
5M̂ , ’’ i.e., in strict form (Â2M̂ ) r̂AM50. This state is an
incoherentstatistical mixture of quantum states character
ing each of the variables. The transfer of information b
tween the quantum systemA and apparatusM is realized in
such a state through the classical variablel. Quantum fluc-
tuations therefore exist only virtually as uncertainty in t
physical variables, which do not commute withÂ andM̂ and
are therefore not determined explicitly.

The above-described semiclassical concept of the m
surement is not a general one@2,4,24#. Moreover, generation
of entanglement by means of quantum measurement
been a topical issue for the last decade@25–29#. Therefore, a
generalization of the standard measurement approach ca
sentially extend the concept of quantum measurement.

For example, an essentially quantum isometric~at fixed
cM) transformationcA^ cM→(^kucA&Auk&Auk&M of an ar-
bitrary pure state into an entangled state can be interprete
a measurement of the variableÂ5(lkuk&A^kuA with the help
9-3
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of the apparatus’ variableM̂5(lkuk&M^kuM . The corre-
sponding generalization of the measurement superope
~3! has the form

M05(
kl

~ P̂kl
M TrM( ! ^ ~ P̂kk

A ( P̂ll
A!, ~5!

where the P̂kl5uk&^ l u are the one-dimensional projecto
from u l & onto uk& in the respective Hilbert spacesHA and
HM . For a pure stater̂A5ucA&^cAu, this transformation en-
sures the resulting pure entangled state of the composite
tem. Note, however, that this does not mean the absenc
dequantization of the initial state, because the latter is re
sented in the final state only by the diagonal orthoprojec
P̂kk

A and P̂ll
A .

The above formulas for the measurement superopera
MAM andM0 can be generalized to an intermediate rep
sentation of the form

M5(
kl

Rkl~ P̂kl
M TrM( ! ^ ~ P̂kk

A ( P̂ll
A!, ~6!

which describes anentangling measurementwith the Hermit-
ian entanglement matrix Rkl . This matrix is chosen to ensur
the complete positivity and normalization condition for t
measurement transformation. To our knowledge, Eq.~6! is
the most general form of the entangling measurement su
operator based on the linear combination of the input-ou
projectors, which is compatible with the ideal measureme
concept.

At Rkl5dkl , Eq. ~6! simplifies to the standard quantu
measurement~3!, if one identifies the projector sets with co
responding indicesk and l. The projectorsP̂kk

A in Eq. ~6!
characterize information in the quantum system to be m
sured and its statistical properties are determined by the
sity matrix r̂A. Information that is finally measured by th
apparatus is represented by the projectorsP̂kl

M , and its statis-

tical properties are determined only by the density matrixr̂A

and are invariant with respect to the choice of a basis in
state spaceHM of the apparatus.

The measurement transformation~6! creates an entangle
ment in the bipartite system quantum object syste
apparatus whose value may vary between zero and its m
mum value~which depends onRkl).

Taking the basis set of the density matrices in the fo
r̂A

^ r̂M, we obtain for the transformation of the joint densi
matrix

r̂AM5Mr̂A
^ r̂M5( Rklrkl

A P̂kl
A

^ P̂kl
M . ~7!

For the initial density matrix of the composite system
general formr̂AB, the resulting matrix has the same form~7!,
keeping in mind that the matrix elementsrkl

A correspond to

the partial density matrixr̂A5TrBr̂AB. Therefore, the density
matrix of a composite system is formed in the process
measurement as a result of the dubbinguk&A→uk&Auk&A of
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the chosen object basis, accompanied by multiplication
the corresponding elements of the initial density matrix
the object by those of the entanglement matrix.

III. SPECIAL CASES

Let us assume that the initial state of a quantum system
a pure state, i.e.,r̂A5cAcA

1 with cA5(c1 , . . . ,cD), and the
measurement procedure is complete, which means tha
the projectorsP̂kl are one dimensional. Then, it follows from
Eq. ~7! that

r̂AM5(
k

¸kuuk&&^^kuu, uuk&&5(
i

ekiu i &u i &, ~8!

where the¸k , ek5(ek1 , . . . ,ekD) are the eigenvalues an
the respective normalized eigenvectors of the matrixr̃kl

5Rklrkl5Rklckcl* . This means that the pure state is tran
formed into an incoherent mixture of pure entangled state
the bipartite system object-pointer, which are orthogona
each other and have different degrees of entanglement
depends on the entanglement and density matrices. Fo
case ofr̂A5uk0&^k0u, we haveck5dkk0

and the correspond

ing joint density matrix r̂AM5uk0&
A^k0uA^ uk0&

M^k0uM,
which coincides with the density matrix resulting fro
the standard measurementMAM of the observable
Â5(lkuk&A^kuA. For the case of pure maximum

uncertainty state r̂A5(1/D)(uk&^ku, we have r̂AM

5(kl(Rkl /D)uuk&&^^ l uu with uuk&&5uk&uk&, whereRkl /D is
the object-pointer density matrix in the basis of the dubb
~‘‘cloned’’ ! states.

For the entanglement matrixRi j 5d i j , all the eigenvalues
¸k5ucku2 in Eq. ~8! are represented by the eigenvectorseki
5dki and the degree of entanglement of each of theuuk&&
states is equal to zero. Thus, a completely incoherent mix
of states of the measurable variableÂ5(l i u i &^ i u with deter-
minedl i is formed.

For the entanglement matrixRi j [1, which has the only
nonzero eigenvaluȩ k51 and respective eigenvectoreki
5ci , Eq. ~8! gives us a pure state, which is represented
the single vector

uuk&&5( ci u i &u i &.

The stateuuk&&5(ci u i &u i &, corresponding to the state in Eq
~8!, coincides with the state formed after thequantum dupli-
cation transformation@30#. The degree of its entanglementE
can be estimated as the entropyS@P# of the probability dis-
tribution P( i )5uci u2 of all possible valuesl i of the measur-
able variable. We canalways receive a maximum possibl
degree of entanglementE5 log2 D by choosing the measur
able variableÂ as having maximum uncertainty in the sta
c, which corresponds to the vector representationci

[1/AD and the uniform distributionc→P( i )51/D. There-
fore, for the maximally entangling measurement, vacu
9-4
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ENTANGLING QUANTUM MEASUREMENTS AND THEIR . . . PHYSICAL REVIEW A68, 022309 ~2003!
quantum fluctuations of the measurable variable are tra
ferred into the corresponding entanglement of the bipar
system object-pointer.

For the general case of a mixed initial stater̂A

5(r l u l &^ l u, an incoherent mixture ofD orthogonal~at fixed
l ) sets of entangled statesuuk,l && is formed. These sets, how
ever, are not necessarily orthogonal at different values ol,
but this nonorthogonality is largely of formal character a
physically does not mean nonorthogonality of the states
one and the same Hilbert spaces. When one consider
incoherent mixture of states, phase uncertainty is due to
additional degree of freedom, and incoherence means tha
consider physically distinguishable ~orthogonal @31,32#!
states. In fact, the orthogonal wave functionsc,w correspond
to two physically distinguishable statesi , j that describe dif-
ferent phases in the composite statesc5ua&u i &, w5ub&u j &
even for nonorthogonal statesa and b. Keeping this in
mind, in a more detailed quantum description of a compo
system, which includes all physically valuable degrees
freedom, quantum operators of the corresponding phys
subsystems do commute.

IV. GENERAL STRUCTURE OF THE QUANTUM
MEASUREMENT SUPEROPERATOR AND ANALYSIS

OF A TWO-DIMENSIONAL MODEL

Let us first define the constraints imposed on the quan
measurement superoperator by the normalization cond
and positivity property. From Eq.~7! we obtain Trr̂AM

5(Rkkrkk
A , which, with an arbitrary choice ofr̂A, immedi-

ately gives the normalization conditionRkk[1. The positiv-
ity requirement and, simultaneously, the complete positiv
properties require the positivity of the matrixr̂e

A5(Rklrkl
A )

for an arbitrary positive matrixr̂A5(rkl
A ). Then, using the

spectral representation of both these matrices, one
readily show that a necessary and sufficient condition
this requirement is the positivity of the entangleme
matrix R5(Rkl).

A repeated entangling measurement, i.e., the repeated
plication of the same measurement superoperator on
same apparatus-system Hilbert space, leads, on accou
the measurement superoperator~6!, equality Rkk[1, and
vanishing of the off-diagonal elements of the pointer dens
matrix after tracing out TrM(, to the relation

M 25MAM . ~9!

Therefore, a repeated entangling measurement leads to
tanglement destruction and the resulting transformation
equal to the standard measurement. This entanglemen
struction in the initial state of the quantum object-pointer
due to a ‘‘resetting’’ of the apparatus needed to achieve
dependence of the final system-apparatus state from the
tial apparatus state.

Equation~9! is valid for any entangling matrixR, i.e., the
entangling measurementM is the ambiguous square root o
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the standard measurementMAM , which reveals in the spec
trum structure of the corresponding matrices represe
ing M.

As an example, let us consider a two-level system w
dimHA52 for which the positivity criterion gives the fol
lowing general form for the entanglement matrix:

R5S 1 q

q* 1D , uqu2<1. ~10!

The eigenvalue equation for the measurement su
operator

Mr̂AM5lr̂AM ~11!

can be solved analytically once we have expressed it in
form

(
kl

(
m

Rklrklmm
AM P̂kl

A
^ P̂kl

M5l(
kl

(
mn

rklmn
AM P̂kl

A
^ P̂mn

M

→RklS (
m

rklmm
AM D dkmd ln

5lrklmn
AM .

For D52, the dimension of the problem is limited to 1
possible values of the four-dimensional indexklmn of the
‘‘density matrix’’ ~in the eigenvalue problem, in addition t
physically valuable density matrices, arbitrary operators
considered, as well!.

On account of the vanishing off-diagonal elements in
transformed density matrixrklmn

AM on the left side of the above

equation, we find that eight right eigen-null vectorsêAM
0k , k

51, . . . ,8 corresponding to the eigenvaluel50 are de-
scribed by the following operators:

êAM
0k 5H r̂A

0k
^ P̂12

M , k51,2,3,4

r̂A
0k

^ P̂21
M , k55,6,7,8,

~12!

which have zero diagonal matrix elementsrklmm
AM along M

with arbitrary density matricesr̂A
0k . Freedom in choosing

them is due to the eightfold degeneracy and related to
arbitrary choice of four linearly independent basis vect
~12! corresponding to the related basis operatorsP̂12

M ,P̂21
M of

the pointerM.
The other four zero eigenvectors satisfy the relat

r̂kl11
AM 52 r̂kl22

AM and have the form

êAM
0k 5 r̂A

0k
^ ~ P̂22

M2 P̂11
M !, k59,10,11,12, ~13!

with arbitrary linearly independent density matricesr̂A
0k .

Finally, for two nonzero eigenvectors withl51 we have
a pair of linearly independent functionsrk5dk1 ,dk2 satisfy-
ing the relations rklmn

1,k 5rkdkldkmd ln and corresponding
operators
9-5
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êAM
1k 5H P̂11

A
^ P̂11

M

P̂22
A

^ P̂22
M

~k513,14!. ~14!

These two operators provide a basis of the convex
p êAM

1,131(12p)êAM
1,14 (0<p<1) of the density matrices

which are not changed in the measurement transformati
The last two linearly independent operatorsêAM

015

5 P̂12
A

^ Î M and êAM
0165 P̂21

A
^ Î M are the eigenoperators wit

eigenvalue equal to zero only atRkl5dkl when the measure
ment is a standard measurement,not an entangling measure
ment. In the general case, the superoperatorM lacks two
eigenvectors, because it is not described by a matrix
simple structure similar to the single-mode fermion annih
tion operatorâ5(0

0
0
1 ), which has a single nonvanishing righ

eigenvectore05(1,0) @33#. Accordingly, Eq.~9! is realized
as the relationâ250, which washes out dependence of t
squared operator on the entangling parameterq.

The corresponding linear subspacec15êAM
0151c16êAM

016 con-
tains only density matrices, which have no physical mean
Nevertheless, this subspace cannot be excluded from
complete 16D space, because it is included into the con
all positive Hermitian density matrices.

The entangling measurement superoperator matrix in
‘‘eigenbasis’’ êAM

lk has the form

M51
1 0 0̂ 0 0 0 0

0 1 0̂ 0 0 0 0

0̂u 0̂u Ô 0̂u 0̂u 0̂u 0̂u

0 0 0̂ 0 0 q 0

0 0 0̂ 0 0 0 q*

0 0 0̂ 0 0 0 0

0 0 0̂ 0 0 0 0

2 , ~15!

where Ô is a 10310 zero matrix, and0̂ and 0̂u are ten-
component zero bra and ket vectors, respectively. In ma
~15!, 4th and 5th lines correspond to the transvers
transversal basis operators and two bottom lines corresp
to the two noneigenoperatorsP̂12^ Î /D, P̂21^ Î /D. The sub-
spaces corresponding to matrix~15! are 2D invariant, 12D
zero, and 2D improper subspaces.

V. CAN ENTANGLING MEASUREMENT BE USED
FOR ENTANGLEMENT TRANSFER?

Many applications of quantum information processing
gorithms, such as practically interesting cryptographic pro
cols, require realization of a pair of spatially separated
tangled quantum systems@1,10#. They serve as resources fo
quantum information engineering and developing techno
gies for their creation is of prime importance@15#. Determin-
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istic creation of spatially separated entangled quantum
tems is a difficult problem to solve. By contrast, pairs
entangled subsystems exist naturally and spontaneo
within many spatially localized physical systems.

For example, conservation of the total momentum of
atom is not related to the separate conservation of its c
ponents, orbital and spin momenta. Thus, the eigenstate
the atom are, in the general case, entangled states relat
subsystems describing orbital and spin momenta separa
Another example is laser excitation of rovibrational states
molecules, which results in the entanglement between
vibrational and rotational degrees of freedom.

Now, the following question arises, ‘‘can thesenaturally
entangled states be used for a transfer of their entanglem
onto an entanglement of spatially separated quantum sys
with the help of an entangling measurement?’’

To answer this question, let us consider four systemsA, B,
M, and N with an initial stater̂ABMN5 r̂AB

^ r̂M
^ r̂N. We

assume that two of them,A and B, are in the initially en-
tangled stater̂AB, whereas systemsM and N are initially
independent and spatially separated fromA,B. We will then
check if it is possible to transfer entanglement from the
partite systemA-B onto the bipartite systemM -N by apply-
ing two independent transformationsMA and MB to the
subsystemsA-M and B-N, respectively. The correspondin
joint superoperator has the form

MB^ MA5 (
klmn

RklRmn@ P̂mn
B

^ ~ P̂mm
N ( P̂nn

N !TrB(#

^ @ P̂kl
A

^ ~ P̂kk
M ( P̂ll

M !TrA(#,

where systemsM andN are treated as pointers for the me
surements of systemsA and B. The resulting state of the
bipartite systemM -N can then be obtained by tracing outAB

that leads to the transformationsP̂mn
B →dmn , P̂kl

A →dkl and,
on account ofRkk5Rnn , can be written as

r̂MN5(
k

~ P̂kk
N r̂NP̂kk

N ! ^ (
n

~ P̂kk
M r̂MP̂kk

M !.

This means that simultaneous measurements in the sys
A andB always produce twouncorrelateddequantized state
of the systemsM and N if any quantum correlations with
other systems are neglected. Therefore, an entangling m
surement cannot be used for entanglement transfer onto
tially separated systems.

VI. QUANTITATIVE CHARACTERISTIC OF
ENTANGLEMENT DUE TO ENTANGLING

MEASUREMENT

In accordance with Secs. II and III, the entangling me
surement superoperator creates entanglement in the bip
system object-pointer, which does not depend on the in
state of the pointer and is defined only by the entanglem
matrix and the initial state of the quantum system in t
9-6
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eigenbasis of the measurable variable~or a set of commuting
variables!. Generally, two types of created entanglement d
to entangling measurement described by the respective
herent information~i.e., preserved entanglement@34,35#! are
of interest to us: one-time entanglement describing one-t
statesr̂AM of the systemA and the apparatusM, and two-
time entanglement describing how the initial state of the s
tem A is linked to the resulting state of the apparatusM in
terms of the initial density matrixr̂A and the superoperato
N of a two-time channelA→M @see Eq.~17!# @30#.

In the first case, for the one-time channelA�M we have
the entanglement measure E5S@ r̂M#2S@ r̂AM# ~which is
equal toS@ r̂A#2S@ r̂AM#) with r̂AM given by Eq.~7!. Ex-
pressing the entropy via the matrix elementsRklrkl , on ac-
count ofRkk[1, we obtain

E5S@~rkk!#2S@~Rklrkl!#, ~16!

where the entropiesSare calculated for the diagonalized an
complete density matricesr̃kl5Rklrkl , respectively.

The degree of entanglement created after the entang
measurement defined by Eq.~16! is always positive in con-
trast with the coherent information, which can be negat
for an arbitrary channel. Such an induced entanglement v
ishes for diagonal density matrices, which means that co
ence between the measured states, which is transferred
the measurement onto the pointer, is absent before
measurement.

For the case of a pure state with maximum indetermina
ness of the measurable variable, i.e.,rkl[1/D, an induced
entanglement due to the entangling measurement has
form

E5 log2 D1( r k log 2r k ,

where 0<r k<1 are the eigenvalues of the normalized e
tanglement matrixRkl /D. For the maximum coherency, i.e
for Rkl[1, we obtain the maximum possible valu
E5 log2 D of the entanglement due to the entangli
measurement.

The superoperator of the two-time channelA→M , i.e., a
channel that links the initial state of the quantum system
final state of the apparatus, has the following form@30#:

N5TrA M~( ^ r̂M !, ~17!

where the substitution symbol ‘‘( ’’ describes dependence o
the initial state of the quantum systemr̂A. The channel de-
fined this way allows one to use the original definition of t
coherent information@36#.

On account of the measurement superoperator struc
~6!, superoperator~17! does not depend on the initial poin
er’s stater̂M. Thus, with the help of the transformationM
we can readily conclude that tracing out the initial state le
to the diagonalization of the output density matrixrkk

M 5rkk
A

and its dependence solely on the diagonal part of the in
density matrix of the measurable quantum system. Suc
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transformation for the coherent informationS@ r̂M#
2S@(N^ I)CARCAR

1 #, whereCAR defines the initial state o
the input and the reference systemR corresponding to the

density matrix at the inputr̂A, always yields a zero value du
to the fact that both density matrices are diagonal and t
diagonal elements are equivalent.

Therefore, entanglement after the measurement is cre
only for one-time states, but two-time entanglement does
exist because of the destruction of initial coherency.

VII. CONCLUSIONS

In conclusion, we have studied a natural mathemat
generalization of the standard quantum measurement on
entangling quantum measurement, which creates an
tanglement between the measurable quantum system an
apparatus in the bipartite setting quantum object-pointer.
entangling measurement procedure is defined, as well as
standard measurement procedure, by the choice of mea
able variables and, additionally, by the entanglement mat
Such a procedure can be physically realized with the help
an apparatus that can have either microscopic or macrosc
nature. In the latter case, we deal with an ‘‘ideal’’ measu
ment transformation.

Repeated entangling measurement results in the stan
incoherent measurement transformation. Thus, the en
gling measurement superoperator can be represented b
ambiguously determined square root of the standard m
surement superoperator. This ambiguity, as has been i
trated in the two-dimensional example, is due to the inco
pleteness of the corresponding superoperator’s eigenve
system.

The entangling measurement, as we have proved, ca
be used for entanglement transfer from a bipartite system
another one.

It has also been shown that the entangling measurem
creates a one-time entanglement in the bipartite system q
tum object-pointer whose degree depends on the entan
ment matrix and the initial state of the quantum system a
is bounded above by the logarithm of the number of meas
able values. The degree of two-time entanglement is alw
equal to zero due to the complete decay of initial coheren
This means that only dequantized information about the
tial state of the quantum system is preserved.

It is argued that the coherent information is a valid to
for characterizing entanglement created in the bipartite s
tem quantum object-pointer.
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