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Abstract—A set of very important simple quantum systems is analyzed from the standpoint of the amount of
coherent information that is accessible when information channels corresponding to the systems are used. It is
shown that for simple quantum models the coherent information can be calculated and used for estimating the
potential possibilities of the corresponding quantum channel asasource of physical information in experiments
associated with the effects of the coherence of quantum states. The following physical models are studied: a
two-level atom in alaser radiation field, an aggregate of two two-level subsystemsin amultilevel atom (hydro-
gen), a system of two two-level atoms in the process of joint quantum-deterministic evolution and under the
action of transformations of quantum measurement and quantum duplication, aswell as one and two two-level
atoms in the process of emission. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Finding a completely quantum analog of Shannon’s
guantitative measure of information [1] that would sat-
isfy the corresponding quantum coding theorem, i.e.,
guarantee transmission along a quantum channel with a
fixed information capacity irrespective of the physical
nature of the channel, has for a long time remained a
central unsolved problem of quantum information the-
ory. The solution of thisproblemisgivenin[2, 3] using
the concept of coherent information

|c= Sbut_sba (1)

where S,; describes the quantum entropy of the output
variables of the channel and S, is the exchange entropy,
taken from areservair. If the measurel . is positive, then
expressed in qubitsit gives the logarithm of the dimen-
sion of the Hilbert space, all states of which can be
transmitted with probability p=1inthelimit N — oo
for long ergodic ensembles. In the opposite case, when
the exchange entropy is greater than the output entropy
and, correspondingly, the noiseintroduced by the chan-
nel completely nullifies the input information, we take
[.=0.

Thereisevery reason to expect that in application to
physics coherent information will play a much larger
role than Shannon’'s information. While in classical
physicsthe information capacity of channels, arisingin
the process of a physical measurement, ordinarily can
also be estimated without special calculations, at least
in order of magnitude, thisisfar from being the casein
the quantum situation. Analysis of the potentially
accessible quantum information in the formulation of
experimentsin the newest directions of physics, associ-

ated with quantum computations, problems of quantum
communication and quantum cryptography [4, 5],
where the measure of coherent information of the phys-
ical channel used determines the potential information
content of the data obtained, is especially important.
However, in order to apply the concept of coherent
information to physical systems the corresponding
channel in the form of a superoperator transformation
% must be specified for each system considered and the
required quantum calculations, which, as a rule, are
quite nontrivial, must be performed. It is shown in the
present paper that this can be done, at least, for the most
important simple quantum systems studied. The analy-
sisisperformed for systems of various physical nature,
including channels with qualitatively different nature
of the input and output of the type of atom in the elec-
tromagnetic field of the vacuum. The classification of
the types of guantum channels considered, coupling
two quantum systems, is given in Fig. 1.1 The types of
two-moment channels studied, where the information
is transmitted from a state at an earlier moment t = 0 to
a state at a later moment t > 0, must be supplemented
by the corresponding single-moment analogs, in which
information at the output concerning the state of the
input at the same moment in time is considered. The
first classis most closely associated with the problems
of quantum communication and gquantum measure-

1 The specific limitations associated with the causality principle
and due to the spatial localization of the systems 1 and 2 are
important only for the channels1 — 2and 1 — (1 + 2). The
analysis performed below of a system of two atoms interacting
viaaradiation field requires that the relativistic retardation of the
signal be taken into account in order to give a correct description
of the dynamics at short times.
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Fig. 1. Classification of possible quantum channels cou-
pling two quantum systems: (@) 1 — 1—information is
transferred from theinitial state of asystemtoitsfinal state;
(b) 1 — 2—information is transferred from the sub-
system 1 of thesystem (1 + 2) to the subsystem 2; (¢) 1 —
(1 + 2)—information istransferred from the subsystem 1 of
the system (1 + 2) to the entire system (1 + 2).

ments, and the last class is associated with modern
approaches to problems of quantum computations and
quantum teleportation.

This paper is organized as follows. A description of
the physical content of coherent information and the
corresponding basic relationsisgivenin Section 2. Sec-
tion 3 isdevoted to adescription of the basic definitions
and the technique of superoperator representations. The
set of physical systems and the corresponding quantum
channels is discussed in the next sections according to
the classification presented in Fig. 1. The exchange of
coherent information between the quantum states of a
two-level atom (TLA) in a resonant laser field in two
different momentsin time (Fig. 1a) isdiscussed in Sec-
tion 4. The same type of channel (1 — 1) isanalyzed
in Section 5 for a multilevel system, consisting of two
systems of sublevels, for the example of the hydrogen
atom. Section 6 examines the exchange of coherent
information between two different quantum systems. It
includes exchange between (1) two TLA coupled by a
unitary transformation (Fig. 1b), (2) two TLA coupled
via the procedure of quantum measurement (Fig. 1b),
(3) an arbitrary system and its duplicated formed as a
result of the quantum duplication procedure (Fig. 1c),
(4) TLA and the field of the electromagnetic vacuum
(Fig. 1b), and (5) two TLA coupled via a photon field
of the vacuum (Fig. 1b). The basic results of this work
are summarized in the conclusions.
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2. QUALITATIVE MEANING OF COHERENT
INFORMATION AND ITS RELATION
WITH SHANNON’S INFORMATION

The classical measure of Shannon’s information
with error-free transmission of all possible values of a
quantity x, which assumes M values, is given by | =
log,M , which for the given choice of the base of the

logarithm it is conventionally assigned a “bit” as the
unit of measurement. If the transmitted values x have
different probabilities and are described by the proba-
bility distribution P(x), then the definition presented is
applicable not directly to x but to an ergodic sequence
X (k=1, ..., n) of statistically independent copies of x
with the probability distribution P(x,) - ... - P(x,). In
this case, asymptotically for n —» o, the set of
sequences of nonzero probability consists of M,, = 2'SP)
approximately equally probable values, and one sym-
bol corresponds to information (log,M,)/n = p),
where SP) = - P(X)log,P(x) is the Boltzmann
entropy. This result, which, specifically, plays a funda-
mental role in statistical physics, gives the basis for
assigning the value | = §(P) to the information obtained
with error-free transmission of all values of x with
probability distribution P(xX). If errors are possible in
transmission, then such a nontrivial information trans-
mission channel is described by a conditional probabil-
ity distribution P(y|x) of the values of the output vari-
able y for afixed value of the input variable x. In this
case, for long ergodic sequences the specific error-free
transmitted information is described by the reciprocal
Shannon information:

I = S(Px) + S(Py) - S(ny)

2
= S(P) - ¥ SIPYIXIP(XY. @

Here P,, Py, and P, are, respectively, the probability
distributions for theinput x, output y, and the pair (X, ).
The first relation in Eqg. (2) indicates the symmetric
(reciprocal) character of Shannon’s information with
respect to input and output. The second relation gives
the information as the difference of the entropy of the
output variable y and the average value of the entropy
introduced by the channel into the value of y for the
transmission of agiven asymbol x. The meaning of the
latter relation ismost transparent for achannel in which
the transmitted values x are represented in transmission
by nonoverlapping subsets M, of the values of the quan-
tityy I M, i.e, thedistortionsreduceto scatter of the
output variable y in the regions M,. The transmitted
information is described, in this case, as the difference
of the total entropy of y and the average entropy of the
subsets M,..

The initial definition of the coherent information is
the relation I, = log,dimH, where H is the Hilbert
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space of the states of the input quantum system, all
states of which are transmitted without distortions. The
natural term for the unit of quantum information is the
term “qubit,” corresponding to a two-level quantum
system with dimension dimH = 2, that is used in the
theory of quantum computations. The fundamentally
new element of the theory is the quantum character of
the transmitted information, which is described by an
arbitrary coherent superposition of the basic elements.
If the statistical distribution of the input states is
described by the density matrix p;,, then on the basis
of considerations similar to those described above, with

error-free transmission of quantum states Y O H the
measure of quantum information is the von Neuman

entropy |, = §(pi,) where

S(p) = ~Trplog,p

is the direct operator generalization of the expression
for Boltzmann's classical entropy. The simplest chan-
nel implementing error-free transmission of informa-
tion is, for example, the dynamical quantum evolution
of aclosed system considered at two momentsin time,
t=0andt=0.

For a quantum channel with distortions the input
state is represented as a linear transformation of the
input state Poy; = 6 Pi,. The superoperator 6 of the
channel is analogous to the conditional probability dis-
tribution P(y|x), considered above, of aclassical chan-
nel. The guantum generalization of the Shannon defini-
tion (2) is constructed on the basis of the second rela-
tion, in which the first term—the quantum entropy of
the output—has a unique quantum generalization in the
form of the corresponding von Neuman entropy. The
second term, describing the entropy introduced by the
channel—the so-called exchange entropy S—should
give in the quantum case with error-free transmission,
i.e., for the identity superoperator 6 = ¢, a zero quan-
tity, and for a pure state at the input (analog of the clas-
sical deterministic state) it should be identical to the
entropy at the output, which in this case is determined
only by the entropy introduced by the channel. These
reguirements can be satisfied by considering instead of
the input quantum system its expansion H ® H', where
the variables H' do not interact with the channel vari-
ables, but rather the state pp in the aggregate system is
pure and such that after averaging it gives the initial
state P;, [2]. This procedure of replacing the initia
guantum system is called “purification” of the mixed
guantum state. The corresponding transformation, per-
formed by the channel on the composite quantum sys-
tem, hasthe form € ® %, where $ corresponds to con-
stancy of the variables of the additional system, and the
resulting exchange entropy is identified with the
entropy of the transformed composite system. The spe-
cific form of the purified statein H ® H, i.e,, with the
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choice H' = H, is explicitly contained in the formula,
obtained in [3], whence follows

Pe = ZMHDHIDH*DH*I, ©)
i

where p;, |if] and | are the eigenvalues and the
right/left eigenvectors of the density matrix p;,, and
li*Oand 0* | denote the complex-conjugate vectors.
The purified state is combined, therefore, from the
input system and its “mirror image.”2 The correspond-
ing exchange entropy has the form

S = S(pa), (4)

where

P = (€0 F)pe. ©®)

The transformation 6 in the information channel, in
general can describe the transfer of information to the
output system with a different Hilbert space of states
Hy Z H.

For physical applications it is important to give an
adequate physical interpretation of the density matrix
(5) introduced in[3] and the density matrix, determined
here, of the purified state (3), which initialy appear
from the above-described mathematical considerations.
The expression (3) describes the combined state of the
system consisting of the input and the mirror image,
from which the quantum-mechanical state of the sys-
tem input—output appears after transmission along the
channel. In the classical theory the conditional proba-
bility P(y|x) of the output with fixed input and, simul-
taneously, averaging with the distribution P(x) over the
states of the input correspondsto the state (5). The con-
ditional distribution isrepresented by the superoperator
%, and averaging over the input is represented in the
structure of the wave function

We = 5 Jpliti*g

corresponding to the purified state (3). This two-parti-
cle stateis entangled, i.e., it does not reduce to a statis-
ticak mixture of density matrices of the type
|W; id; [Mih; |y |, corresponding to pure states in the
form of direct products|; [i¢; Cof single-particle states.
Its purely quantum fluctuations reproduce the fluctua-
tions of amixed nature, which are described by the den-

sity matrix p;,, determined in the first space in the
direct product H ® H. Therefore the density matrix (5)
describes the state of the input—output system, where
actually the input is replaced by the mirror-conjugate
representation (see footnote 2). It determines the

2 Compared with [3], here the complex conjugate, necessary for
invariance of representation under study relative to rotations in
subspaces corresponding to degenerate eigenvalues of the density

matrix, is added. For real matrices p;, with a nondegenerate
spectrum, this refinement is not essential.
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exchange entropy in the channel and, on the basis of its
physical meaning, is qualitatively different from the
standard one-time density matrix, since the correspond-
ing nonzero entropy appears only as a result of the
transformation of the input state accompanying trans-
mission along the channel. In the absence of distortions
in the channel, in contrast to the standard two-particle
density matrix, it always correspondsto apure state and
zero entropy.

3. BASIC DEFINITIONS
AND THE SUPEROPERATOR

REPRESENTATION TECHNIQUE
For purposes of the present paper, it is especialy
effective to use a combination of the technique of sym-
bolic and matrix representation of superoperators[6]. The
most genera representation of a superoperator transfor-

mation isintroduced by the symbolic expression

€= 3 @Io k0 ©)

where the substitution symbol © must be replaced by an
operator of the transformed physical quantity or the
density matrix, while g, describe an arbitrary vector
basis in Hilbert space H where the transformed opera-
tor is defined. To describe physically realizable trans-

formations of the density matrix p, the operators §,,
must satisfy the positivity conditi onof the block oper-

ator S = (3,) and the orthonormality condition

Tr§g =3y, (7)
which ensures the required normalization for all nor-
malized operators p with Trp = 1.

Using the symbolic representation (6), it is possible
to obtain the corresponding expression for the product
of the superoperators €, and 6., whence it is possible
to give a symbolic representation of the superoperator
algebra. For the case §,, = |k | we obtain a represen-
tation of the identity superoperator $, and for §, =
|Kk|dy we obtain the representation of the quantum
reduction superoperator

R =Y KK © KIK.

The case §,, = 9y describes the superoperator of taking

the trace Tro, which is alinear functional in the space
of density matrices. The correspondence between the
matrix form S= (S,,,) of the representation of the super-

operator € in the orthonormal basis &, and the repre-
sentation (6) is given by the relation

Sa = G(K) = STy ke, (8)

3 The operators §y O 1 must be introduced in order to check posi-
tivity completely [7].
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whose validity can be easily checked after substituting
into the expression (6) and comparing with the standard
definition of the matrix elements by means of the rela-
tion

(6@“ = Z Smném-

The exchange entropy in the expression (1) for
coherent information is determined by the relation (4),

where the combined density matrix p, of the input—

output variablesisdescribed in accordancewith [3] and
Eq. (5) by the relation

Pa = > 6lpillp;)) O |p 7. (9)
i

Here |p,(F ﬁil,ﬁ“ |i Care the transformed eigenvectors of

the input density matrix
Pin = Zpi“DEL

|p’ Oare the complex conjugates of |p;J and €6 is the
input—output transformation superoperator, so that
Pout = 6 pin describes the density matrix of the output

variables. Using the superoperator representation in the
form (6) and the above-defined eigenvectors [i[] the
density matrix (9) becomes

Pa = 3 (Pip)™8; O Ip¥ IR, (10)
ij

where the operators §; arethe states of the output vari-
ables. Both theinput and output partial density matrices
can be represented as traces over the corresponding
additional system: Pout = TrinPa s Pin = TroutPa -

To describe exchange of coherent information
between two quantum systems via the quantum chan-
nels, shownin Figs. 1b, 1c (1 — 2or 1 — (1 + 2))
theinitial combined density matrix must be giveninthe
form of adirect product p; ., = pin ® P2, Where p;, =
P, and p, describestheinitial partial density matrices,
where the first one describes the input and the second
describes the output channel. For a channel of the type
1 — 2 the output are states of the second system,
which contain information about the initial state of the
first system, if a certain transformation over both sys-
temsis satisfied.

The temporal dynamics of the composite system
(1 + 2) isdescribed by the superoperator 6, ., ,, and the
corresponding superoperator transformation of the
channel Py, =€ Pi, can bewritten as

€ = Tr,€,.5(0 0Py,

where the trace is calculated over the final states of the
first system. In terms of the representation (6) for the
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composite system this transformation can be described
as

€= 3y WS nlnTKIBATK © I

KkIA n

(11)

where the multiplicative basis |k[kOis used, and the
indicesk and k correspond to thefirst and second quan-
tum systems. The operator coefficients §, in Eq. (6)
now assume the form

Sq = Z z (]S, 1A INCIK oA D] (12)

KA n

Here € depends on the form of the combined dynami-
cal transformation €, . , and on the initial state p, of

the second system, and it maps the initial states of the
first system into the final states of the second system.

Ordinarily, it is much easier to calculate the one-
time amount of information, since the input—output
density matrix is simply a one-time density matrix of
the corresponding variables, which is calculated
directly from the dynamical equations. For one system,
the corresponding channel is described by the single
superoperator $ and the corresponding calculations are
trivial: for the combined input—output density matrix
(9) we obtain the pure state

Pa = leiﬂb?Dzmi*IE)jl,
i j

and the corresponding exchange entropy S, = 0 and
coherent information I, = §,; = S;. For two systems,
where the input—output density matrix isacombined den-
sity matrix P, . » , the corresponding coherent information
in the system 2 about the system 1 a thetimet is

l(t) = S[PAt)] = S[P1+2(V)]-

When the dynamics is described by a unitary transfor-
mation and theinitial state of the second systemis pure,
all eigenstates |iof the first system transform into the
corresponding set of orthogonal states W,(t) of the com-
posite system (1 + 2), so that the combined entropy
remains unchanged, and the coherent information
becomes

I(t) = S[p()] - pu(0)].

If the initial state of the first system is also pure, then
we obtain simply I (t) = §p, (t)]. For aTLA this gives
| = 1 qubit, if the maximally entangled state is attained
in a system of two qubits.
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Fig. 2. Coherent information transferred from the initial
stateof aTLA att = 0 state at the moment t > 0 asafunction
of the dimensionlesstime I't and the Rabi frequency Q/T .

4. TWO-LEVEL ATOM
IN A RESONANT LASER FIELD

We shall consider the exchange of coherent infor-
mation between the states of a TLA in aresonant laser
field at two different times (Fig. 1a).

An example of a channel of this type was examined
in [3], where only pure dephasing in the absence of an
external field was studied. In the presence of afield and
other relaxation mechanisms, the calculation of coher-
ent information on the basis of the Markov approxima-
tion can be performed in the most general form by cal-
culating the combined density matrix (9) using the
technique of matrix representation of dynamical super-
operators. One question of interest is the form of the
dependence of the coherent information on the applied
resonant field.

An externa field changes the characteristic decay
rates of theinitial state of a TLA, which are described
by the real parts of the eigenvalues A, of the dynamic
Liouville operator & = &, + &, where the Liouville
operators &, and & describe relaxation and interaction
with an external field. Here we confine our attention to
relaxation represented only by pure dephasing in com-
bination with the action of a laser field. The corre-

sponding Liouville matrix in the operator basis &, =
{1, 63, 6,, 6,} hastheform [§]

O O
I':EOO—FOH a3
O O
0o-Q 0 -r O

where I" describes the rate of decay of the phase in the
absence of the field, Q is the Rabi frequency, and G,,

0,, and G5 are the Pauli matrices. The eigenvalues of
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the matrix (13) have the form
A = {0, -, (I + JF?=4Q%/2,
~(F = T?-4Q%/2}.

The laser field changes these quantities compared with
their unperturbed values 0, I, —I", and O.

It is of interest to determine whether or not such a
change in the decay rates results in a decrease of the
decay rate of the coherent information, though from
intuitive considerations it can be inferred beforehand
that an information gain is possible only in the case of
another effect related with the laser field—decrease of
the relaxation parameters of the relaxation superopera-
tor &£, itself [8-11].

Calculating the matrix of the dynamical superoper-
ator 6 = exp(£t) and using the corresponding repre-
sentation (6), we obtain an analytical expression for the
combined density matrix (9) and then [using Egs. (4)
and (1)] we calculate the coherent information retained
inthe TLA at thetimet relative to itsinitial state. The

latter is chosen in the form of the density matrix po =

| /2 with maximum entropy S(p;,,) = 1 qubit. The com-
putational results are displayed in Fig. 2. They are
described by athreshold-type time dependence, typical
for coherent information limited by coherence loss pro-
cesses. In addition, it is clearly seen that the coherent
information does not increase, and it even decreases
somewhat with increasing field intensity, as described
by the corresponding Rabi frequency.

The results presented demonstrate also the singul ar-
ity of the first time derivative of the coherent informa-
tion at timet = 0, which isacharacteristic feature of the
initial stage of its decay. Indeed, initially the input—out-
put density matrix (9) of a TLA has the form of a pure
state p, = WW* with the input—output wave function

w=5 ,/p |iliC Its eigenvalues A, and the probabili-
ties of the corresponding eigenvalues are al zero,
except the one corresponding to W. As a result of the
singularity of the entropy function  (-A,)log,A, a
A =0, the derivative of the corresponding exchange
entropy also possesses alogarithmic singularity.
Another interesting feature of the coherent informa-
tion is the form of its dependence on the initial (input)
state p;,. If it were possible, it would make sense to

choose it in the form of the characteristic Liouville
operator

4
Pin = z Kmin[
=1

where |k.;,0is the eigenvector corresponding to the
minimum eigenvalue |[ReA,| > 0 of the matrix L. How-
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ever, the vector |k.;,Cequals{0, (I + J/T*-4Q%)/2Q,
0, 1}, i.e., it describes an element of the linear subspace
of operators with zero trace, since the first component
is zero. Therefore the decay of coherent information
cannot be decreased by decreasing the rate of decay of
the coherence of the atomic state in alaser field.

5. EXCHANGE OF COHERENT INFORMATION
BETWEEN TWO OPEN SUBSYSTEMS
OF A SINGLE SYSTEM

Let us consider the quantum channel of the type
1 — 1 (Fig. 1a) between two open subsystems A and
B of a single closed system {A, B} with the Hilbert
space of states H, + Hg, where H, and Hg are the Hil-
bert subspaces of the systems A and B, respectively, and
the “+" sign is used to denote alinear union.

In classical information theory this situation corre-
sponds to transfer of only the part A O X of the values
of the input random variable x 0 X. The realization
where the detector does not obtain any message aso
carries information and means that x belongs to the

complement of A, x O A. This situation can be
described by the corresponding transformation of the
choice 6 = P, + Po(1 — P,), where P, is the projection
operator from X onto the subset A, P.x=xfor x 0 Aand

P =0 (empty set) for x 0 A, while P, is the projec-
tion operator from X onto an independent single-point
set X, and Pyx = X,. Thistransformation correspondsto
the classical reduction channel, which results in infor-

mation losses, only if A does not consist of only one
point. If Aisonly point, then it is possible to obtain a

potential limit of information equal to 1 bit, because A
replaces the second state of the bit, so that actually no
information islost.

In quantum mechanics the corresponding reduction
channel is described by an obvious generalization of
the classical selection operator—the sel ection superop-
erator

€ = PpO Pa+ [0O0|Tr(1—-Pa) © (1-Pa), (14)
where the state |00is the quantum analog of the classi-
cal one-point set, which does not depend on all the
other states. This transformation is positive and pre-
serves the normalization of the density matrix, describ-
ing adequately the exchange of coherent information
between open subsystems of a single system. The last
term in Eq. (14) expresses conservation of normaliza-
tion, provided that all states outside the set of B states
areincluded. In our case these states are all included in
the form of the projector |OMD|, which does not take
into account their coherence. In contrast to the classical
one-bit case, for aTLA they do not carry any coherent
information because of the complete loss of coherence.
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Considering the coherent information transmitted
from one part A to the part B of a system, whose state
depends on time, we are dealing with asuperoperator of
this channel of the form

Gas = G6o()6a, Go(H) = UM QUML) (15)

with a unitary temporal resolution operator U(t) and
selection superoperators 6, and 6 of the subsystems
A, B. Here the selection superoperator 6, is presented
only for the possibility of determining the complete
superoperator of the channel irrespective of the form of
the input density matrix. However, if the input density
matrix p;, is determined only in the corresponding
subspace H, of the complete space H, this superopera-
tor can be dropped.

Let us assume that the dynamical evolution of the
systemisgiven by aset of eigenstates [k Cand the corre-
sponding Bohr frequencies w,. Then, representing the pro-
jectorsin terms of the corresponding input | Cand output
|, [vave functions, we obtain from Eq. (15) the represen-
tation of the temporal evolution specified in the form

Cust) = {én-(t) + |OCI0|

I"oA

x Z El>mIlIJ|(t)D]I|J|-('[)|f1>mﬂ} W D

mOB

(16)

St = Z () (1) LT (0) ) 1 L0 1D ]

mm OB
Wi®D= " exp(-iw,t) T 0k0
k

Let us consider the case of an orthogonal choice of sub-
sets of input/output wave functions, which is of specia
interest. Then, if thereis only one common state |@Cin
the sets |y [ |d,,0and U(ty) = 1 for atime t,, we abtain
the expression

€ nelto) = TP © |} + 00| [ © [Or]
Om?

which means that the input system reduces to a classi-
cal bit of information, associated with the states |¢@land
|OC)and no coherent information is transmitted into the
system B. Nonetheless, it appearsin the process of tem-
poral evolution, provided that the eigenstates |k of the
operator U(t) are different from the input/output states
[ ) 9,00 Therefore, the information capacity of the
channel is due to the quantum entanglement of the
input and output on account of the corresponding con-
tribution to the Hamiltonian systems.

To illustrate the exchange of coherent information
in the channd of the type described, we shall consider

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 91

911

1o

— . o l=1
JI=0 m=0\m=-1 m=1

RO -~ n=>2

n=1

Fig. 3. Spinless model of the hydrogen atom. The informa-
tion channel is formed from the input forbidden (Nflm —
n'l'm’) transition 100-200 and the output dipole-active tran-
sition 100-210.

the typical intraatom channel formed by two two-level
systems constructed from two pairs of orthogonal states
A={|Woll Y, [ and B = {|up L], [ of the same atom.
As an example we shall use the spinless model of the
hydrogen atom (Fig. 3): ), is the ground s state with
n=1, Y, , correspond to the s state with | =0, m=0
and the p state with | = 1, m= 0 of thefirst excited state
n=2.

In the absence of an external field the quantum
channel does not transmit any coherent information,
sincethestates| =0, m=0and| =1, m=0 are not cou-
pled. In the absence of an external electric field applied
along the Z axis, the desired pair of four initially degen-
erate states with n = 2 splits as a result of the Stark
effect and transforms into a pair of new eigenstates

[10="(|y,0+ |'~|J2[J/«/éa |20= (|p,0~ |'~|»'2D/«/é

and theinput state| = 0 oscillates with the frequency of
the Stark shift:

[W.(O0= cos(at) W, [H sin(wt) WLl

Therefore, on account of the applied electric field, the
input states become entangled with the output states,
which as a result contain coherent information about
the input states.

In our model, Eq. (16) givesthe operators §,, inthe

form of a 3 x 3 matrices, where the third columns and
rows correspond to afictitious “vacuum” state |OC

) @100@L ) §OSin(oost)O§
S, = S, =
11 D000 12 DO 0 0D
0ooon 0o 0 00
O O
g 0 o00p
Sn = Usnwt 000U
O
0o 0 000
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Ho 0 o =
5% =gosn’(wl) O °
0 0
0o 0 cos (wst)

Zero values of the operators §,, and §,, correspond to
the absence of coherent information at t = 0, i.e, the
absence of entangled states. Choosing the input density
matrix intheform p;, = 1 /2, we obtain the correspond-
ing input—output density matrix:

01 X O
0=00 = 0 O
o000 g
DOOOOO 0 i
000000 0 [
f’uzgx X2 Er
=00=0 O
O O
Dz 2 U
goo0oo0o00 0 [
] 1-x O
DOOOOO 5 0

where x = sin(wg) and the output density matrix Poy is
diagonal with diagonal elements 1/2, x%/2, and (1 —
x?)/2.

Cadculating the nonzero eigenvalues (1 + x?)/2 for
P, andtheentropies S, and S,, we obtain the coherent
information

I, = [(1+x%)l0ga(1 + X*) — X*logz(x%)]/2.

This function is greater than zero everywhere with the
exception of the point x = 0, where the coherent infor-
mation is zero, and its maximum is one qubit with x = 1,
i.e., for the precession angle wy = £172. Henceit is evi-
dent that the coherent information about the states of
theforbidden dipoletransition isin principle accessible
viathe dipole transition using the Stark effect. Its aver-
age valuein timeis .= 0.46 qubits.

The estimates made above indicate the potential
possibility of observing experimentally the coherent
effects due to the influence of the forbidden electronic
transition on a dipole transition. Forbidden transitions
were studied in [12, 13] as a potential source of infor-
mation about the breakdown of spatial symmetry dueto
an interaction via weak neutral currents [14, 15]. If
I. =0, then in principle only an incoherent effect of a
forbidden transition via the population of the ground
state ng is possible. In this case only one parameter—
the population—can be measured, while the exact
knowledge of the phase requires|. = 1.
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6. EXCHANGE OF COHERENT INFORMATION
BETWEEN TWO CLOSED QUANTUM SYSTEMS

A variety of results associated with the exchange of
coherent information between two atomic qubits,
including analysis of the problem from the standpoint
of the measure of quantum entanglements [16], analy-
sis of the problem of eavesdropping [17], and a set of
various experiments proposed in order to create a con-
trollable entanglement in a system of two atoms [18,
19], has been published in the last few years. From the
information  standpoint  coherent  information
exchanged in a system of two TLA coupled by a quan-
tum channel depends on the specific form of the trans-
formation realized by the quantum channel as well as
on the initial states of the TLA. It is natural to take as
the initial state the product of independent density
matrices of the atoms. p;., = Pin 0 P2

In this section we give a systematic analysis of the
processes |eading to exchange of coherent information
between two initially independent quantum systems.
The following are included: (1) two unitarily coupled
TLA (Section 6.1), (2) two TLA coupled by the quan-
tum measurement procedure (Section 6.2), (3) an arbi-
trary system and its duplicated state (Section 6.3),
(4) TLA and a photon field in free space (Section 6.4),
and (5) two TLA interacting via the vacuum photon
field (Section 6.5).

6.1. Two Unitarily Coupled Two-Level Atoms

We discuss first a noiseless deterministic quantum
channel coupling two TLA (Fig. 1b). It can be
described by a unitary two-atom transformation, given
by the matrix elements Uy; i, K, i, K, i'=1, 2. Thenthe
superoperator of the transformation of channel 6, giv-
ing the mapping Pi, —> Pou = P2, Can be written in
terms of the substitution symbol using the relation (6)
with the operators

gkI = z S(I,pvluml’
pv

represented in accordance with Egs. (8) and (12), by the
matrix elements 6 in the form

S(I,pv = zpzuBUmp,kch:w,IB-

ma 3

(17)
The relation
Tr§, = stl,uu = 9y
u

holds and gives the correct normalization, and the pos-
itiveness of the block matrix

Og . g, O
(8) = D?ll ?12 0
0Sy S U
guarantees positiveness of 6.
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For atransformation of theform U = U; ® U,, which
does not lead to the creation of entangled states, Egs. (6)

and (17) give 6 = p, Tro, which signifies a transfor-
mation of the initial state p; of the first TLA into the
fina state, which is not entangled with the state p, =
U,p, U, of the second TLA.

Relation (17) can be simplified by considering pure
states P>, so that in combination with the possibility of
choosing an arbitrary transformation U without entan-
glement it isuseful, specifically, to single out especially
the case of the state p,eg = Oqpdqq, - Taking account of

the linearity of the dependence of S, ,, on p, and the
convexity of the coherent information I, asafunction of
% [20], the analysis of Eq. (17) can be reduced to anal-
ysis of therelation

sd,uv = zumu,kuo r’;w,ltxO’ (18)
m

which means that the quantum channel is described
only by a unitary transformation U. Here the summa-
tion extends only over the states [mCof the first atom
after the entangling transformation.

The coherent information transmitted, in the present
system of two coupled TLA with

JP2)l1—(P2)ui]

isshown in Fig. 4. It is a convex function of p, with a
maximum at the boundary, p;, = 0.1. Just asin the case
of one TLA, the coherent information preserves the
typical threshold character of the dependence on the
coupling angle, which describes the degree of coherent
coupling of two TLA with respect to independent fluc-
tuations of the second TLA.

Pin = |A/2a (P2)1 =

6.2. Two Two-Level Atoms Coupled
by the Quantum Measurement Procedure

We shall consider aspecia type of quantum channel
coupling two TLA,*which can be described by a super-
operator 6, defining the quantum measurement proce-
dure. This procedure is related with a different
approach to defining the quantum information [21],
based on the so-called measured information.

Let us consider first a channel consisting of two
identical two-level systems. In terms of the wave func-
tion the corresponding transformation of the complete
measurement of the state of the first TLA has the form

W06~ Yalalod a = @WI (19

41n reality, the results of the present section are valid not only for
two TLA but also for any quantum systems with finite dimension.
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Fig. 4. Coherent information transmitted between two TLA
coupled by a unitary transformation, as a function of the
matrix element pq4 of the diagonal initial density matrix of
the second TLA and the procession angle ¢ = Qt.

This transformation describes the entanglement of cer-
tain basis states |q [ which does not depend on the ini-
tial state ¢ of the second TLA. Thelatter isan indicator
of the measuring setup, preserving completeness of
information on the basis states in the initial state Y =

a|@l] Relation (19), given in the form of a single-

valued transformation of the wave function, inreality is
not alinear transformation with respect to ¢ and there-
fore cannot represent a deterministic transformation,
not being unitary. The corresponding representation in
terms of the two-atom density matrices has the form

ﬁlzszﬁhlﬁbjlﬁlzlcpj%%%[ﬂmlﬁm- (20)
i

Itislinear with respect to p,, and satisfies the standard
conditions of physical realizability [7, 20], i.e., com-
pletely positive and preserves normalization. The den-

sity matrix has the form Zpikp[]]:g[[&)iﬂfm, so that

Sp12) = 9P, ), and in accordance with the relations of

Section 3 the one-time coherent information is zero.
This is due to the classical nature of the information,
represented here only by the classical indicesi.

The quantum transformation superoperator cou-
pling two TLA in the case of atwo-time channel can be
obtained from the relation (6) with 5, = |@.[D,|d,
k] — | and |kO— |@ L} which after taking the
trace with respect to thefirst TLA and replacing p;, by
the substitution symbol © becomes

M = Isle’l |::k®, (21)
2

where Py = |@.,| are orthogonal projectors, repre-
senting the eigenstates of the “indicator” variable of the
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second TLA, and Ex = |@.[1%, | describesthe orthogonal
expansion of unity. It is constructed from the same
operators, giving here the transformation of the quan-

tum-classical reduction Tr,Ex © = [@] © |@L) which
gives the procedure for obtaining the classical informa-
tion k from the first system. Applying the transforma-
tion (21) to p;,, and using Eg. (9), we obtain for the cor-
responding output and input—output density matrices

Z Plo I,
K

Pout =

22
pa = 3 BulmdIm I,
k

where
P = [DdPlaD= " pil il

are the eigenvalues of the probabilities for the reduced
density matrix, and

I 0= Z Bl PO

are the normalized modified input states, coupled after
the quantum measurement procedure with the output
states |@ L)1t should be noted especially that, asfollows
from Egs. (22), there is no exchange of coherent infor-
mation in the system, since the vectors |@ [are orthog-
onal and the entropies of the density matrices (22) are
obviously the same. Conversely, the measured informa-
tion, introduced in [21], in this case is different from
zero.

There is no difficulty in extending this result to the
case of a channel of a more general form, where the
output system has a structure that is different from the
initial system and is described by a different Hilbert
space. The latter difference is taken into account by
replacing in the preceding relations the basal states |@[]
of the second system by adifferent orthogonal set |¢; (=
V|q@Lwhere V is the isometric transformation from the
Hilbert space of the states H, of the first system into a
different Hilbert space H, of the second system. After
simple, obvious transformations, we obtain the same
final result—the absence of coherent information trans-
mitted in such achannel. Thisresult is characteristic for
coherent information, in contrast to other information
approaches (see, e.g., [21]).

It is of interest to discuss guantum-measurement
transformations of amore general type, specifically, the
procedure of indirect (generalized) measurement, first
introduced in application to problems of the theory of
optimal quantum detection and measurement in [22],
and in a more general form of the nonorthogonal

expansion of unity € (d\) in [23] (€ (dM) is the equiv-
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aent of a positive-definite operator-valued measure
(POVM), used in semiclassical variants of quantum
information theory and quantum theory of optimal
detection/measurement [5, 24, 25]). The corresponding
transformation of the indirect measurement is obtained
by averaging the transformation of the direct measure-
ment, applied not directly to the system of interest but
rather to its combination with an arbitrary independent
system. In the general case the indirect measurement
superoperator can be represented as

M = zﬁqTr%q@, (23)
q

where P, describe an arbitrary set of orthogonal pro-
jectors, and %q is a general nonorthogonal expansion

of unity in the space H (POVM). We note that €4 =
|1 | describes the case of a “pure” POVM, first
introduced precisdly in thisform in the quantum theory
of detection/measurement [22]. It corresponds to a
complete measurement in H ® H, with the choice of the
singular density matrix for the initial state of an auxil-

iary independent system pp. = 8,00

In Eq. (23) the classical index q representstheinfor-
mation exchange between theinitial state and final state
of the output. Since the number N, of values of g can be
greater than thedimension dimH, it can be inferred that
a definite amount of coherent information might be
attained as a result of this excess. The corresponding
output and input—output density matrices have theform

f)out = quﬁ)(h
| (24)
Pa = S JpipyHléalitPa I i,

qij

where bq = Tr'éq i, describe the probabilities of
states determined by indirect measurement. For the
case of complete indirect measurement, based on the
guantum analog [2] of the classical theorem of no
increase in information in successive transformations
of data and on the above-proved result concerning the
complete direct measurement, it is not difficult to sub-
stantiate theoretically and confirm by numerical calcu-
lationsthat it isimpossible to obtain coherent informa-
tion. Therefore, to obtain as aresult of a measurement
procedure a nonzero amount of coherent information it
IS necessary to use incomplete (“soft”) quantum mea-
surements which require an independent, more detailed
investigation.

6.3. Quantum Duplication Procedure

In counterpoint to the above-studied dequantizing-
type measurement procedure, determined by the trans-
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formation (20), which completely destroys coherent
information, here we shall examine atransformationin
achannel, shownin Fig. 1c, which preserves the coher-
ent information:

P12 — P12 = Z EmTrzf)lszj[Im[]kﬁ[”ijmij
i

It does not ignore the phase relations between the vari-
ous @ because of the use of the off-diagonal matrix ele-

ments of the input density matrix p; = Pin -
For theinitial density matrix intheform of aproduct
Pin ® P,, interms of the transformation p;, — P1

from H to H ® H the corresponding superoperator has
the form

2 =% loln e @@ © o0 (25
i

This superoperator determines the transformation of a
coherent measurement in counterpoint to an incoherent
measurement, studied in [21]. The transformation of the

coherent measurement converts p;,, intoan p, -indepen-
dent state

Pout = P12 = Zﬁhlﬁml%ﬂkﬂ%m@jlﬁml, (26)
i

which resultsin duplication of the eigenstates ¢ of the
input by the same states of the indicator variable

k = kaﬂm

The pure input states transform into pure states of the
composite (1 + 2) system by means of duplication of
the indicator states:

b Y Delas

which repeats the mapping (19), which gives a multi-
valued description of the corresponding superoperator
transformation. Of course, only theinput states equal to
the eigenstates ¢, of the chosen indicator variable are
duplicated without distortion as a result of the incom-
patibility of the nonorthogonal states; this is the basic
theorem of the impossibility of quantum cloning [26].
The entropy of the output state with density matrix

(26), possessing the same matrix elementsas p;, , obvi-
oudly isidentical to the entropy of theinput state, S, =

Sn = 9pin], on account of the conservation of the
coherence of all pureinput states.

For combined input—output states the transforma-
tion (25) leadsto the density matrix (9) inthe spaceH ®
H ® H of theform

Pu = ZI@KEB(PKEUZHIEDI O /PP XXl (27)
K
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where p, and [x,Care the same as above; this makes it

possibleto construct aspectral expansion of the density
matrix in the form

Pin = Zbkaka
K

Keeping in mind the fact that the first term of the tensor
product in Eq. (27) isaset of transition projection oper-
ators Py, PrPmn = 8,,Pkn, itiseasy to provethe alge-
braic rule used for an arbitrary scalar function f:

~ . [ n n
f@zpm g RkE: ZPH O f(R)u,
Kl

ki

where R = (R« ) isablock matrix, and

~ ~ O ~
Trf§ Pu 0 Ry = Trf(R).
O
kl

Here R = (/PP XK/, which equals simply

| XK | [ with ||X T4 = /Py X, Since this corresponds to
avector in the space H ® H. The eigenvalues A, of this
matrix are{ 1, 0, 0, 0} with asingle nonzero eigenval ue,
corresponding to the vector ||x I

A calculation of the exchange entropy gives S, =0
and therefore |, = S,. This means that the quantum
duplication procedure does not decrease the volume of
coherent information in the channel 1 — (1 + 2) irre-

spective of whether or not theindicator k iscompatible
with the input density matrix, i.e., [k, pin] = 0.

If the channel considered is reduced to the channel
shown in Fig. 1b and studied in the preceding section
by taking the trace over the first or second system in
Eqg. (26), we obviously arrive at the measuring proce-
dure examined in Section 6.2. As aresult, we can con-
clude that coherent information is not associated with
each system separately, i.e., it is strongly coupled with
both systems. The specific nature of the quantum infor-
mation, studied above, can be used, specificaly, in
algorithms for correcting quantum errors [27] or for
producing stable entangled states [28].

6.4. Two Level Atom-Vacuum Field Channel

We now consider theinteraction betweenaTLA and
a vacuum electromagnetic field, i.e., the process of
electromagnetic emission, as an information channel
(Fig. 1b), which compared with aTLA in agiven laser
field (see Section 4) introduces a new object—the pho-
ton vacuum fiel d—as the output.

For this purpose we shall employ a reduced model
of the field based on the reduction of the Hilbert space
in the Fock representation (Fig. 5). In a more general
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Fig. 5. Structure of the compound Hilbert space of the

atom—field system. For the vacuum initia state of the field

both atomic states and only two Fock states of the field (J0O
and |10 areincluded in the dynamics of the atom-field com-

posite system, which can be defined by only two states
[OCJ1EL, and |1G}|OC) described by time-dependent functions
Wo(k, A) and cq, respectively.

terminology, this problem corresponds to the problem
of the dynamics of theinteraction of atwo-level system
with amultimodal system of linear oscillators[29]. The
solution of the latter problem on long-time scales, to
which we shall confine our attention here, corresponds
to the standard description of the emission of a single
photon. Moreover, for purposes of information analysis
of asystem consisting of an atom and afield, thereisno
need to describe the coherent dependence of the wave
function Yy(k, A) of the photon on the photon wave vec-
tor (and polarization), since only thetotal probability of
emission of the photon isimportant.

In the basis of states of the free atom and the Fock
states of the free field for a vacuum initial state a, =0
we obtain from the relation (18)

— *
le,pv - Zumu, kOUmv,IO!
m

where the Greek indices are used to denote states of the
photon field, which in general correspond to the num-
ber of photons and their spatial coordinates or wave
vectors. The calculation of this superoperator, per-
formed on the basis of a unitary matrix of the temporal
evolution of the atom-field system with matrix ele-
ments Up,, o, ISillustrated in Tables 1 and 2.

Choosing Yy(k, A) as the basis element of a single-
photon subspace of states of the field reducesthe matrix

GRISHANIN, ZADKOV

S4, w Of the superoperator to anonoperator transforma-
tion matrix, which in terms of the matrices §,; has the
form

(28)

g

11
(|

)

where |c,]> = exp(—yt) describes the decay of the popu-
lation of an initially completely populated excited state
of the atom, and

[3 [k, Mfdk = 1-exp(-y1)

describes the total probability of detecting a photon. It
follows from Egs. (28) that the structure of the photon
is of no significance, and the transmitted information is
determined only by the probability of emission of a
photon by the timet. This reduction of the photon field
(only the photon numbers p, v = 0, 1 are important)
reduces it to an equivalent two-level system.

Applying the transformation (28) to the input den-
sity matrix

[l [l
— Pu P 0

Upp 1-pp U
where we have confined ourselvesto the case of purely

real off-diagonal matrix elements, we obtain the output
density matrix

f)in

] _ 12 O

Pout = E PutPne” pn(l-€e”) %
172 -

Dplz(l—eyt) pzz(l—eyt) U

and the corresponding input—output density matrix,
which for the case p,, = 0 has the form

O 12 0
O P11 0 |0[pupxp(l-e yt)] d
] S 0 0
Py = E 0 P2€ %
0 0 0 |0 0 0
] vt 172 _ 0
Olpup2(1-e")]"" 0 [0 py(l-e") O
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For t — o this expression gives a completely
entangled state (in the sense of the absence of classica
correlations, sinceit isapure state) of the atom—photon
system, leading to transfer to the photon of coherent
fluctuations of the atomic state, which are equivalent to
amixed ensemble. The corresponding eigenvalues are

Aa ={0, 0, 1 — pypexp(-yt), P eXp(-Y)} .

The nonzero values describe the probabilities of atomic
states at time t. The eigenvalues for the output density

matrix (photon + vacuum) P, are

Aout = { P22[1 —exp(=y1)], 1 — p[1 —exp(-y)]}

and describe the probability of observing whether the
photon is emitted or not. The set of quantities presented
above determines the characteristic values of the prob-
abilities of the combined input—output density matrix
and the partial density matrices. The coherent informa-
tion given by the corresponding entropy difference
assumes the form

le = XP2100,(XP22)
—(1—p22* XP22)10g,[1—(1-X)p2]
+(1—Xp2)10g,(1—Xp2)
= (1=X)P22109,(P22 —XP2),

(29)

where x = exp(—yt). This formula is applicable for
I.>0, while in the opposite case I, = 0. The corre-
sponding critical moment in time is determined by
the relation exp(—yt) = 1/2, which corresponds to the
probability 1 — py,[1 — exp(—yt)] of the absence of a
photon being equal to the probability 1 — py,exp(—yt) of
the bottom atomic level being occupied.

The results of the calculation of the coherent infor-
mation are presented in Fig. 6 for two specia cases.
P, = 0 (Fig. 6a) and py; = 1/2, 0 < py, < 12 (Fig. 6b).
It is easy to see from Fig. 6athat the coherent informa-
tion is symmetric with respect to the symmetry point
p1; = 1/2. A further increase of the population of the
excited state p,, = 1 — py; and the corresponding level
of photon emission does not increase the amount of
coherent information. Thisis due to the decrease in the
input entropy, which determines the potential maxi-
mum of coherent information. For the same reasons,
the coherent information decreases if a nonzero coher-
ent correctionismadeto theinitial density matrix of the
atom in the form of a state with maximum entropy and
vanishes for a purely coherent initial state (Fig. 6b).

In accordance with Section 3 and taking account of
the fact that the initial state of the field is pure, the one-
timeinformation isequal to the entropy difference only
for the photon field represented by the density matrix

Pout @nd theinitial atomic state represented by p;, . For
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Table 1. Unitary transformation atom-field—atom-field
Un, ke fOr avacuumiinitial state of the photon field; theindi-
ces m and k enumerate the atomic photons, g and a are the
photon numbers

ML
ka
00 01 10 11
00 1 0 0 0
01 - — - -
10 0 Yok, A) C 0
11 - - - -

Note: The second and fourth rows are the matrix elements that do
not appear inthematrix elements § ,,, which are computed
(see Table 2).

Table 2. Atom-field superoperator g, ,,, Setting the trans-

formation |kl — |u@|. Theindicesk and | enumerate the
atomic photons, and , v are the photon numbers

Hv
N 00 01 10 11
00 1 0 0 0
01 0 0 Wo(k, A)
10 0 |yyk,A\)| O
1| P 0 0 |Wolk, A) x W (k', \)

apureinitial state of the atom in the form of an excited
state |200we obtain for all times the nonzero coherent
information

. = =xlog,x—(1—x)log,(1-x),

which gives one qubit for the timewhen x = 1/2 and the
population of the excited state coincides with the prob-
ability of emission of a photon.

6.5. Atom-to-Atom Transmission of Coherent
Information Via a Free Vacuum Field

L et usconsder aquantum channd of thetypel — 2
(Fig. 1b), where information is transferred from one
atom to another through free space by emission of a
photon, assuming that initially the second atom is the
ground state. In addition, we introduce a limitation on
the scale of the times considered, excluding from our
analysis fast processes occurring on times of the order
of and less than the period of atomic oscillations, i.e.,
ignoring the discrete nature of the electromagnetic sig-
nal that is associated with interatomic retardation [30—
33]. In this approximation the problem under consider-
ation isaDicke problem [34], for which the solution in
terms of two time-decaying symmetric and antisym-
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Fig. 6. Coherent information transmitted by the atom—field quantum channel as a function of time and the output density matrix of
the atom: (&) the density matrix is diagonal with matrix element p14 of the ground state; (b) the density matrix is described by the
sum of | /2 and thereal (“cosine”-type) coherent addition in the form of the off-diagonal term p;56;.

metric Dicke states ||sII= (|1JRO+ [20L0V /2, |jadD=

(|10R0- |2010y /2 and a stable vacuum state ||0I=
[10L0 N the following form is well known:

cy(t) = cO)exp[—(ys/2+iAt],
Ca(t) = c(0)exp[—(ya/2 +iA)t],
Co(t) = c4(0)
+[c0)? + c,(0)% = ct)® —c, ()7 2™,

(30)

where cy(t) is the complex amplitude of the vacuum
component |11 including the incoherent correction
due to the spontaneous radiative transitions from
excited atomic states, §(t) is the uniformly distributed
phase of atomic oscillations, ys , and A are the decay
rates and the frequency splitting (frequency shift),
respectively, and c, , are the complex amplitudes of the
Dicke states.

In terms of multiplicative combinations of individ-
ual atomic states |i[Jj Cfor the corresponding amplitudes
of theinitial states c,,(0) = 0 and c,,(0) = 0 the dynam-
icsof the system under study isdescribed in accordance
with the dynamics of Dicke states, determined by the
relations (30), for the following equations:

() = cu(0) + F())€*Vcy(0),
Cau(t) = f(t)Cu(0), cCpu(t) = f,(t)ci(0),
Ch(t) = 0,
f(t) = {1-[exp(~yst) + exp(~y,1)1/2} 7,

f© = {exp[(y/2+iN]
+exp[—(ya/2—-iNt]}/2,
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fa(t) = {exp[-(yJ/2+iA)]
—exp[—(Y./2—iN)t] }/2.
Using these expressions for the input operators of the

form ¢4(0) ¢ (0)|K| for the first atom and then aver-

aging them over the final states of the first atom and
fluctuations of the atomic field (the latter are repre-
sented here only by the variable §(t)), we obtain the
symbolic representation of the superoperator of the

transformation of the channd p™ (0) — p@ (1) =

%(t)p"™ (0) and the corresponding operators &, in the
form

G(t) = 1M © [L| + [ f() + | f(1)|*] 10
x [2] © |20 + | f (1)) *[202] © [2(12)
+ f,()|2002] © |11 + f;(t)|1D]1| o |2112],

Oq 00 Oq %y O
5, =000 s, =p00f0OF
0000 0o o O
. 0 o oO
=0 0
T Bt 00 (31)
0 0
« _Of®*+|tM* 0 g
S2 = , 0
0 0 [f.0]" O

To make the problem more concrete we shall con-
sider two identical atomswith parallel dipole moments,
directed perpendicular to the vector connecting the
atoms under study. Then only two dimensionless vari-
ables are important: yt, where y describes the radiative
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Fig. 7. (a) Population of the excited state of the second atom and (b) the coherent information in a system of two atoms interacting
through free space as a function of the dimensionless time yt and the interatomic distance ¢ = wyR/c. Theinput density matrix cor-

responds to a state with maximum entropy p;,, = | /2.

decay rate of an isolated atom, and a dimensionless
interatomic distance ¢ = k,R, where R is the distance
between the atoms and k, is the modulus of the wave
vector corresponding to the frequency of the atom. The
dimensionless two-atom radiative decay rates and the
frequency shift due to the short-range dipole-dipole
interaction are described by the corresponding relations
[19, 28-33]:

YsdY=1%0, Ay=(3/4)/¢3

where g = (3/2)(¢sind + dp—2cosd — ¢p~3singd).

The corresponding coherent information can be cal-
culated as done in Section 6.4. Using the correspon-
dence exp(-yt) — f(t)? + |f{(t)[%, the operators §,, for
the two cases are completely similar and the coherent
information, once again, is described by the same rela
tion (29) with x = f(t)? + |f{(t)|>. Nonetheless, in this
case the dependence considered, as compared with the
case of one atom (see Section 6.4), has specific qualita-
tive features on account of the oscillatory character of
the function |f; 4(t)]? as a function of the interatomic
distance ¢.

If there were no oscillations due to the quasiel ectro-
static short-range dipole-dipole interaction, i.e., if one
could set A = 0, then the coherent information would
always be zero, since the threshold x < 0.5 cannot be
reached. The parameter 1 — x corresponds to the popu-
lation of the excited state of the second atom with the
initial state [20Jof the first atom, and for the optimal,
from the standpoint of information, value of the popu-
lation of the first atom p,,, equal to half itsinitial pop-
ulation, we obtain 1 — x < 1/4 and correspondingly x =
3/4. The oscillations in |f(t)]° lead to interference
between two decaying Dicke components, so that the
maximum of the population n, = 1 — x also reaches
larger values right up to n, = 1, and the corresponding
coherent information becomes different from zero.
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Thefunctionsn,(d, yt) and 1 (¢, yt), calculated using
the relation (29), are shown in Fig. 7. They serve as a
universal measure for a system of two atoms, being
independent of their frequency or the magnitude of the
dipole moment (thelatter isvalid only for afixed geom-
etry of the system, described above).

Asone can seein Fig. 7athe population decays rap-
idly as afunction of time because of the rapid decay of
the short-lived Dicke component. The population and
the coherent information undergoes strong oscillations
(Fig. 7b) for small interatomic distances$.As$¢ — 0
the population of the long-lived Dicke state remains
substantial for unlimited long times, but no coherent
information is associated with it because the other com-
ponent decays completely.

7. CONCLUSIONS

It was shown in thiswork that the concept of coher-
ent information can be used for obtaining the most gen-
eral description of the interaction between two rea
guantum systems, including systems of qualitatively
different physical nature, and for determining the role
of quantum coherence in the composite system.

It was shown for aTLA in aresonant laser field that
coherent information in the system does not increase
with increasing intensity of the applied field, provided
that the relaxation processes themselves are not sup-
pressed.

The hydrogen atom was considered as an example
of the information exchange between subsystems of a
single system. It was shown that under the action of an
applied electric field coherent information exchange
occurs between forbidden and dipole-active atomic
transitions as aresult of the interaction due to the Stark
effect.

It was shown for two unitarily coupled TLA that the

maximum possible value of the coherent information
I, = 1 qubit is reached for maximum entanglement and
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I. = 0 for any type of measurement procedures studied
in Section 6.2.

It was shown for information exchange between
TLA and afree photon field in the process of emission
of electromagnetic radiation that the coherent informa-
tion reaches the threshold of nonzero values at the crit-
ica point of the decay exponential exp(—yt) = 1/2,
where the probability of there being no emitted photon
is equal to the population of the lower atomic state. At
the maximum the coherent information can reach the
value . = 1 qubit.

It was shown for information exchange between two
atoms by means of the vacuum field, when the atoms
are separated by a distance of the order of the wave-
length, that the coherent information is nonzero only as
a result of coherent oscillations between the Dicke
states, which are due to short-range dipole-dipole
guasielectrostatic interaction with spatial dependence
O1/R8. In contradistinction to this, the semiclassical
information extracted using the quantum detection pro-
cedure is associated with population correlations [28].
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