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Abstract—A set of very important simple quantum systems is analyzed from the standpoint of the amount of
coherent information that is accessible when information channels corresponding to the systems are used. It is
shown that for simple quantum models the coherent information can be calculated and used for estimating the
potential possibilities of the corresponding quantum channel as a source of physical information in experiments
associated with the effects of the coherence of quantum states. The following physical models are studied: a
two-level atom in a laser radiation field, an aggregate of two two-level subsystems in a multilevel atom (hydro-
gen), a system of two two-level atoms in the process of joint quantum-deterministic evolution and under the
action of transformations of quantum measurement and quantum duplication, as well as one and two two-level
atoms in the process of emission. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Finding a completely quantum analog of Shannon’s
quantitative measure of information [1] that would sat-
isfy the corresponding quantum coding theorem, i.e.,
guarantee transmission along a quantum channel with a
fixed information capacity irrespective of the physical
nature of the channel, has for a long time remained a
central unsolved problem of quantum information the-
ory. The solution of this problem is given in [2, 3] using
the concept of coherent information

Ic = Sout – Se, (1)

where Sout describes the quantum entropy of the output
variables of the channel and Se is the exchange entropy,
taken from a reservoir. If the measure Ic is positive, then
expressed in qubits it gives the logarithm of the dimen-
sion of the Hilbert space, all states of which can be
transmitted with probability p = 1 in the limit N  ∞
for long ergodic ensembles. In the opposite case, when
the exchange entropy is greater than the output entropy
and, correspondingly, the noise introduced by the chan-
nel completely nullifies the input information, we take
Ic = 0.

There is every reason to expect that in application to
physics coherent information will play a much larger
role than Shannon’s information. While in classical
physics the information capacity of channels, arising in
the process of a physical measurement, ordinarily can
also be estimated without special calculations, at least
in order of magnitude, this is far from being the case in
the quantum situation. Analysis of the potentially
accessible quantum information in the formulation of
experiments in the newest directions of physics, associ-
1063-7761/00/9105- $20.00 © 20905
ated with quantum computations, problems of quantum
communication and quantum cryptography [4, 5],
where the measure of coherent information of the phys-
ical channel used determines the potential information
content of the data obtained, is especially important.
However, in order to apply the concept of coherent
information to physical systems the corresponding
channel in the form of a superoperator transformation
# must be specified for each system considered and the
required quantum calculations, which, as a rule, are
quite nontrivial, must be performed. It is shown in the
present paper that this can be done, at least, for the most
important simple quantum systems studied. The analy-
sis is performed for systems of various physical nature,
including channels with qualitatively different nature
of the input and output of the type of atom in the elec-
tromagnetic field of the vacuum. The classification of
the types of quantum channels considered, coupling
two quantum systems, is given in Fig. 1.1 The types of
two-moment channels studied, where the information
is transmitted from a state at an earlier moment t = 0 to
a state at a later moment t > 0, must be supplemented
by the corresponding single-moment analogs, in which
information at the output concerning the state of the
input at the same moment in time is considered. The
first class is most closely associated with the problems
of quantum communication and quantum measure-

1 The specific limitations associated with the causality principle
and due to the spatial localization of the systems 1 and 2 are
important only for the channels 1  2 and 1  (1 + 2). The
analysis performed below of a system of two atoms interacting
via a radiation field requires that the relativistic retardation of the
signal be taken into account in order to give a correct description
of the dynamics at short times.
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ments, and the last class is associated with modern
approaches to problems of quantum computations and
quantum teleportation.

This paper is organized as follows. A description of
the physical content of coherent information and the
corresponding basic relations is given in Section 2. Sec-
tion 3 is devoted to a description of the basic definitions
and the technique of superoperator representations. The
set of physical systems and the corresponding quantum
channels is discussed in the next sections according to
the classification presented in Fig. 1. The exchange of
coherent information between the quantum states of a
two-level atom (TLA) in a resonant laser field in two
different moments in time (Fig. 1a) is discussed in Sec-
tion 4. The same type of channel (1  1) is analyzed
in Section 5 for a multilevel system, consisting of two
systems of sublevels, for the example of the hydrogen
atom. Section 6 examines the exchange of coherent
information between two different quantum systems. It
includes exchange between (1) two TLA coupled by a
unitary transformation (Fig. 1b), (2) two TLA coupled
via the procedure of quantum measurement (Fig. 1b),
(3) an arbitrary system and its duplicated formed as a
result of the quantum duplication procedure (Fig. 1c),
(4) TLA and the field of the electromagnetic vacuum
(Fig. 1b), and (5) two TLA coupled via a photon field
of the vacuum (Fig. 1b). The basic results of this work
are summarized in the conclusions.

1 1
Quantum channel

(a)

(b)

(c)

1

22

2

1

2

Time

1

1

Fig. 1. Classification of possible quantum channels cou-
pling two quantum systems: (a) 1  1—information is
transferred from the initial state of a system to its final state;
(b) 1  2—information is transferred from the sub-
system 1 of the system (1 + 2) to the subsystem 2; (c) 1 
(1 + 2)—information is transferred from the subsystem 1 of
the system (1 + 2) to the entire system (1 + 2).
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2. QUALITATIVE MEANING OF COHERENT 
INFORMATION AND ITS RELATION 
WITH SHANNON’S INFORMATION

The classical measure of Shannon’s information
with error-free transmission of all possible values of a
quantity x, which assumes M values, is given by I =

, which for the given choice of the base of the
logarithm it is conventionally assigned a “bit” as the
unit of measurement. If the transmitted values x have
different probabilities and are described by the proba-
bility distribution P(x), then the definition presented is
applicable not directly to x but to an ergodic sequence
xk (k = 1, …, n) of statistically independent copies of x
with the probability distribution P(x1) · … · P(xn). In
this case, asymptotically for n  ∞, the set of
sequences of nonzero probability consists of Mn = 2nS(P)

approximately equally probable values, and one sym-
bol corresponds to information ( )/n = S(p),

where S(P) = – P(x) P(x) is the Boltzmann
entropy. This result, which, specifically, plays a funda-
mental role in statistical physics, gives the basis for
assigning the value I = S(P) to the information obtained
with error-free transmission of all values of x with
probability distribution P(x). If errors are possible in
transmission, then such a nontrivial information trans-
mission channel is described by a conditional probabil-
ity distribution P(y |x) of the values of the output vari-
able y for a fixed value of the input variable x. In this
case, for long ergodic sequences the specific error-free
transmitted information is described by the reciprocal
Shannon information:

(2)

Here Px, Py, and Pxy are, respectively, the probability
distributions for the input x, output y, and the pair (x, y).
The first relation in Eq. (2) indicates the symmetric
(reciprocal) character of Shannon’s information with
respect to input and output. The second relation gives
the information as the difference of the entropy of the
output variable y and the average value of the entropy
introduced by the channel into the value of y for the
transmission of a given a symbol x. The meaning of the
latter relation is most transparent for a channel in which
the transmitted values x are represented in transmission
by nonoverlapping subsets Mx of the values of the quan-
tity y ∈ ∪ Mx, i.e., the distortions reduce to scatter of the
output variable y in the regions Mx. The transmitted
information is described, in this case, as the difference
of the total entropy of y and the average entropy of the
subsets Mx.

The initial definition of the coherent information is
the relation Ic = dimH, where H is the Hilbert

M2log

M2 nlog

∑ 2log

I S Px( ) S Py( ) S Pxy( )–+=

=  S Py( ) S P y x( )[ ]P x( ).
x

∑–

2log
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space of the states of the input quantum system, all
states of which are transmitted without distortions. The
natural term for the unit of quantum information is the
term “qubit,” corresponding to a two-level quantum
system with dimension dimH = 2, that is used in the
theory of quantum computations. The fundamentally
new element of the theory is the quantum character of
the transmitted information, which is described by an
arbitrary coherent superposition of the basic elements.
If the statistical distribution of the input states is
described by the density matrix , then on the basis
of considerations similar to those described above, with
error-free transmission of quantum states ψ ∈  H the
measure of quantum information is the von Neuman
entropy Ic = S( ) where

is the direct operator generalization of the expression
for Boltzmann’s classical entropy. The simplest chan-
nel implementing error-free transmission of informa-
tion is, for example, the dynamical quantum evolution
of a closed system considered at two moments in time,
t = 0 and t ≥ 0.

For a quantum channel with distortions the input
state is represented as a linear transformation of the
input state  = # . The superoperator # of the
channel is analogous to the conditional probability dis-
tribution P(y |x), considered above, of a classical chan-
nel. The quantum generalization of the Shannon defini-
tion (2) is constructed on the basis of the second rela-
tion, in which the first term—the quantum entropy of
the output—has a unique quantum generalization in the
form of the corresponding von Neuman entropy. The
second term, describing the entropy introduced by the
channel—the so-called exchange entropy Se—should
give in the quantum case with error-free transmission,
i.e., for the identity superoperator # = (, a zero quan-
tity, and for a pure state at the input (analog of the clas-
sical deterministic state) it should be identical to the
entropy at the output, which in this case is determined
only by the entropy introduced by the channel. These
requirements can be satisfied by considering instead of
the input quantum system its expansion H ^ H', where
the variables H' do not interact with the channel vari-
ables, but rather the state  in the aggregate system is
pure and such that after averaging it gives the initial
state  [2]. This procedure of replacing the initial
quantum system is called “purification” of the mixed
quantum state. The corresponding transformation, per-
formed by the channel on the composite quantum sys-
tem, has the form # ^ (, where ( corresponds to con-
stancy of the variables of the additional system, and the
resulting exchange entropy is identified with the
entropy of the transformed composite system. The spe-
cific form of the purified state in H ^ H, i.e., with the

ρ̂in

ρ̂in

S ρ̂( ) Trρ̂ ρ̂2log–=

ρ̂out ρ̂in

ρ̂P

ρ̂in
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choice H ' = H, is explicitly contained in the formula,
obtained in [3], whence follows

(3)

where pi, |i 〉 , and 〈 j | are the eigenvalues and the
right/left eigenvectors of the density matrix , and
|i*〉  and 〈 j* | denote the complex-conjugate vectors.
The purified state is combined, therefore, from the
input system and its “mirror image.”2 The correspond-
ing exchange entropy has the form

(4)

where

(5)

The transformation # in the information channel, in
general can describe the transfer of information to the
output system with a different Hilbert space of states
Hout ≠ H.

For physical applications it is important to give an
adequate physical interpretation of the density matrix
(5) introduced in [3] and the density matrix, determined
here, of the purified state (3), which initially appear
from the above-described mathematical considerations.
The expression (3) describes the combined state of the
system consisting of the input and the mirror image,
from which the quantum-mechanical state of the sys-
tem input–output appears after transmission along the
channel. In the classical theory the conditional proba-
bility P(y |x) of the output with fixed input and, simul-
taneously, averaging with the distribution P(x) over the
states of the input corresponds to the state (5). The con-
ditional distribution is represented by the superoperator
#, and averaging over the input is represented in the
structure of the wave function

corresponding to the purified state (3). This two-parti-
cle state is entangled, i.e., it does not reduce to a statis-
tical mixture of density matrices of the type
|ψi 〉|ϕi 〉〈 ϕi |〈ψi |, corresponding to pure states in the
form of direct products |ψi 〉|ϕi 〉  of single-particle states.
Its purely quantum fluctuations reproduce the fluctua-
tions of a mixed nature, which are described by the den-
sity matrix , determined in the first space in the
direct product H ^ H. Therefore the density matrix (5)
describes the state of the input–output system, where
actually the input is replaced by the mirror-conjugate
representation (see footnote 2). It determines the

2 Compared with [3], here the complex conjugate, necessary for
invariance of representation under study relative to rotations in
subspaces corresponding to degenerate eigenvalues of the density
matrix, is added. For real matrices  with a nondegenerate
spectrum, this refinement is not essential.

ρ̂P pi p j i| 〉 j〈 | i*| 〉 j*〈 |,⊗
ij

∑=

ρ̂in

ρ̂in

Se S ρ̂α( ),=

ρ̂α # (⊗( )ρ̂P.=

ΨP pi i| 〉 i*| 〉 ,∑=

ρ̂in
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exchange entropy in the channel and, on the basis of its
physical meaning, is qualitatively different from the
standard one-time density matrix, since the correspond-
ing nonzero entropy appears only as a result of the
transformation of the input state accompanying trans-
mission along the channel. In the absence of distortions
in the channel, in contrast to the standard two-particle
density matrix, it always corresponds to a pure state and
zero entropy.

3. BASIC DEFINITIONS
AND THE SUPEROPERATOR 

REPRESENTATION TECHNIQUE

For purposes of the present paper, it is especially
effective to use a combination of the technique of sym-
bolic and matrix representation of superoperators [6]. The
most general representation of a superoperator transfor-
mation is introduced by the symbolic expression

(6)

where the substitution symbol ( must be replaced by an
operator of the transformed physical quantity or the
density matrix, while ek describe an arbitrary vector
basis in Hilbert space H where the transformed opera-
tor is defined. To describe physically realizable trans-
formations of the density matrix , the operators 
must satisfy the positivity condition3of the block oper-

ator  = ( ) and the orthonormality condition

Tr  = δkl , (7)

which ensures the required normalization for all nor-
malized operators  with Tr  = 1.

Using the symbolic representation (6), it is possible
to obtain the corresponding expression for the product
of the superoperators #1 and #2, whence it is possible
to give a symbolic representation of the superoperator
algebra. For the case  = |k 〉〈 l | we obtain a represen-

tation of the identity superoperator (, and for  =
|k 〉〈 k |δkl we obtain the representation of the quantum
reduction superoperator

The case  = δkl describes the superoperator of taking
the trace Tr(, which is a linear functional in the space
of density matrices. The correspondence between the
matrix form S = (Smn) of the representation of the super-
operator # in the orthonormal basis  and the repre-
sentation (6) is given by the relation

(8)

3 The operators  must be introduced in order to check posi-

tivity completely [7].

# ŝkl ek〈 | ( el| 〉 ,∑=

ρ̂ ŝkl

ŝkl 1̂⊗

Ŝ ŝkl

ŝkl

ρ̂ ρ̂

ŝkl

ŝkl

5 k| 〉 k〈 | ( k| 〉 k〈 |.∑=

ŝkl

êk

ŝkl # k| 〉 l〈 |( ) Smn l〈 |ên k| 〉 êm,
mn

∑= =
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whose validity can be easily checked after substituting
into the expression (6) and comparing with the standard
definition of the matrix elements by means of the rela-
tion

The exchange entropy in the expression (1) for
coherent information is determined by the relation (4),
where the combined density matrix  of the input–
output variables is described in accordance with [3] and
Eq. (5) by the relation

(9)

Here |ρi 〉 = |i 〉  are the transformed eigenvectors of
the input density matrix

| 〉  are the complex conjugates of |ρi 〉 , and # is the
input–output transformation superoperator, so that

 = #  describes the density matrix of the output
variables. Using the superoperator representation in the
form (6) and the above-defined eigenvectors |i 〉 , the
density matrix (9) becomes

(10)

where the operators  are the states of the output vari-
ables. Both the input and output partial density matrices
can be represented as traces over the corresponding
additional system:  = Trin ,  = Trout .

To describe exchange of coherent information
between two quantum systems via the quantum chan-
nels, shown in Figs. 1b, 1c (1  2 or 1  (1 + 2))
the initial combined density matrix must be given in the
form of a direct product  =  ^ , where  =

 and  describes the initial partial density matrices,
where the first one describes the input and the second
describes the output channel. For a channel of the type
1  2 the output are states of the second system,
which contain information about the initial state of the
first system, if a certain transformation over both sys-
tems is satisfied.

The temporal dynamics of the composite system
(1 + 2) is described by the superoperator #1 + 2, and the
corresponding superoperator transformation of the
channel  = #  can be written as

where the trace is calculated over the final states of the
first system. In terms of the representation (6) for the

#ên Smnêm.
m

∑=

ρ̂α

ρ̂α # ρi| 〉 ρ j〈 |( ) ρi*| 〉 ρ j*〈 |.⊗
ij

∑=

ρ̂in
1/4

ρ̂in pi i| 〉 i〈 |,∑=

ρi*

ρ̂out ρ̂in

ρ̂α pi p j( )1/4ŝij

ij

∑ ρi*| 〉 ρ j*〈 |,⊗=

ŝij

ρ̂out ρ̂α ρ̂in* ρ̂α

ρ̂1 2+ ρ̂in ρ̂2 ρ̂in

ρ̂1 ρ̂2

ρ̂out ρ̂in

# Tr1#1 2+ ( ρ̂2⊗( ),=
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composite system this transformation can be described
as

(11)

where the multiplicative basis |k〉|κ〉  is used, and the
indices k and κ correspond to the first and second quan-
tum systems. The operator coefficients  in Eq. (6)
now assume the form

(12)

Here # depends on the form of the combined dynami-
cal transformation #1 + 2 and on the initial state  of
the second system, and it maps the initial states of the
first system into the final states of the second system.

Ordinarily, it is much easier to calculate the one-
time amount of information, since the input–output
density matrix is simply a one-time density matrix of
the corresponding variables, which is calculated
directly from the dynamical equations. For one system,
the corresponding channel is described by the single
superoperator ( and the corresponding calculations are
trivial: for the combined input–output density matrix
(9) we obtain the pure state

and the corresponding exchange entropy Se = 0 and
coherent information Ic = Sout = Sin. For two systems,
where the input–output density matrix is a combined den-
sity matrix , the corresponding coherent information
in the system 2 about the system 1 at the time t is

When the dynamics is described by a unitary transfor-
mation and the initial state of the second system is pure,
all eigenstates |i〉  of the first system transform into the
corresponding set of orthogonal states Ψi(t) of the com-
posite system (1 + 2), so that the combined entropy
remains unchanged, and the coherent information
becomes

If the initial state of the first system is also pure, then
we obtain simply Ic(t) = S[ (t)]. For a TLA this gives
Ic = 1 qubit, if the maximally entangled state is attained
in a system of two qubits.

# n〈 |ŝkκ lλ, n| 〉 κ〈 |ρ̂2 λ| 〉 k〈 | ( l| 〉 ,
n

∑
kκ lλ
∑=

ŝkl

ŝkl n〈 |ŝkκ lλ, n| 〉 κ〈 |ρ̂2 λ| 〉 .
n

∑
κλ
∑=

ρ̂2

ρ̂α ρi| 〉 ρi*| 〉 ρi*〈 | ρ j〈 |,
j

∑
i

∑=

ρ̂1 2+

Ic t( ) S ρ̂2 t( )[ ] S ρ̂1 2+ t( )[ ] .–=

Ic t( ) S ρ̂2 t( )[ ] S ρ̂1 0( )[ ] .–=

ρ̂2
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4. TWO-LEVEL ATOM
IN A RESONANT LASER FIELD

We shall consider the exchange of coherent infor-
mation between the states of a TLA in a resonant laser
field at two different times (Fig. 1a).

An example of a channel of this type was examined
in [3], where only pure dephasing in the absence of an
external field was studied. In the presence of a field and
other relaxation mechanisms, the calculation of coher-
ent information on the basis of the Markov approxima-
tion can be performed in the most general form by cal-
culating the combined density matrix (9) using the
technique of matrix representation of dynamical super-
operators. One question of interest is the form of the
dependence of the coherent information on the applied
resonant field.

An external field changes the characteristic decay
rates of the initial state of a TLA, which are described
by the real parts of the eigenvalues λk of the dynamic
Liouville operator + = +r + +E, where the Liouville
operators +r and +E describe relaxation and interaction
with an external field. Here we confine our attention to
relaxation represented only by pure dephasing in com-
bination with the action of a laser field. The corre-
sponding Liouville matrix in the operator basis  =

{ , , , } has the form [8]

(13)

where Γ describes the rate of decay of the phase in the
absence of the field, Ω is the Rabi frequency, and ,

, and  are the Pauli matrices. The eigenvalues of

êk

Î σ̂3 σ̂1 σ̂2

L

0 0 0 0

0 0 0 Ω
0 0 Γ– 0

0 Ω– 0 Γ– 
 
 
 
 
 

,=

σ̂1

σ̂2 σ̂3

1.00

0.75

0.50

0.25

0
0.5 1.0

1.5
2.0 0

0.5
1.0

1.5
2.0

Ω/Γ

Γ t

Ic, qubit

Fig. 2. Coherent information transferred from the initial
state of a TLA at t = 0 state at the moment t > 0 as a function
of the dimensionless time Γt and the Rabi frequency Ω/Γ.
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the matrix (13) have the form

The laser field changes these quantities compared with
their unperturbed values 0, –Γ, –Γ, and 0.

It is of interest to determine whether or not such a
change in the decay rates results in a decrease of the
decay rate of the coherent information, though from
intuitive considerations it can be inferred beforehand
that an information gain is possible only in the case of
another effect related with the laser field—decrease of
the relaxation parameters of the relaxation superopera-
tor +r itself [8–11].

Calculating the matrix of the dynamical superoper-
ator # = exp(+t) and using the corresponding repre-
sentation (6), we obtain an analytical expression for the
combined density matrix (9) and then [using Eqs. (4)
and (1)] we calculate the coherent information retained
in the TLA at the time t relative to its initial state. The
latter is chosen in the form of the density matrix  =

/2 with maximum entropy S( ) = 1 qubit. The com-
putational results are displayed in Fig. 2. They are
described by a threshold-type time dependence, typical
for coherent information limited by coherence loss pro-
cesses. In addition, it is clearly seen that the coherent
information does not increase, and it even decreases
somewhat with increasing field intensity, as described
by the corresponding Rabi frequency.

The results presented demonstrate also the singular-
ity of the first time derivative of the coherent informa-
tion at time t = 0, which is a characteristic feature of the
initial stage of its decay. Indeed, initially the input–out-
put density matrix (9) of a TLA has the form of a pure
state  = ΨΨ+ with the input–output wave function

Ψ = |i〉| i〉 . Its eigenvalues λk and the probabili-
ties of the corresponding eigenvalues are all zero,
except the one corresponding to Ψ. As a result of the
singularity of the entropy function (–λk) λk at
λk = 0, the derivative of the corresponding exchange
entropy also possesses a logarithmic singularity.

Another interesting feature of the coherent informa-
tion is the form of its dependence on the initial (input)
state . If it were possible, it would make sense to
choose it in the form of the characteristic Liouville
operator

where |kmin 〉  is the eigenvector corresponding to the
minimum eigenvalue |Reλk| > 0 of the matrix L. How-

λk 0 Γ– Γ Γ2 4Ω2–+( )/2,–, ,{=

Γ Γ2 4Ω2––( )/2 } .–

ρ̂0

Î ρ̂in

ρ̂α

∑ pi

∑ 2log

ρ̂in

ρ̂in kmin| 〉 lêl,
l 1=

4

∑=
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ever, the vector |kmin 〉  equals {0, (Γ + )/2Ω ,
0, 1}, i.e., it describes an element of the linear subspace
of operators with zero trace, since the first component
is zero. Therefore the decay of coherent information
cannot be decreased by decreasing the rate of decay of
the coherence of the atomic state in a laser field.

5. EXCHANGE OF COHERENT INFORMATION 
BETWEEN TWO OPEN SUBSYSTEMS

OF A SINGLE SYSTEM

Let us consider the quantum channel of the type
1  1 (Fig. 1a) between two open subsystems A and
B of a single closed system {A, B} with the Hilbert
space of states HA + HB, where HA and HB are the Hil-
bert subspaces of the systems A and B, respectively, and
the “+” sign is used to denote a linear union.

In classical information theory this situation corre-
sponds to transfer of only the part A ⊂ X of the values
of the input random variable x ∈  X. The realization
where the detector does not obtain any message also
carries information and means that x belongs to the
complement of A, x ∈  . This situation can be
described by the corresponding transformation of the
choice # = PA + P0(1 – PA), where PA is the projection
operator from X onto the subset A, PAx = x for x ∈  A and

PAx = ∅  (empty set) for x ∈  , while P0 is the projec-
tion operator from X onto an independent single-point
set X0 and P0x = X0. This transformation corresponds to
the classical reduction channel, which results in infor-
mation losses, only if  does not consist of only one
point. If A is only point, then it is possible to obtain a
potential limit of information equal to 1 bit, because 
replaces the second state of the bit, so that actually no
information is lost.

In quantum mechanics the corresponding reduction
channel is described by an obvious generalization of
the classical selection operator—the selection superop-
erator

(14)

where the state |0 〉  is the quantum analog of the classi-
cal one-point set, which does not depend on all the
other states. This transformation is positive and pre-
serves the normalization of the density matrix, describ-
ing adequately the exchange of coherent information
between open subsystems of a single system. The last
term in Eq. (14) expresses conservation of normaliza-
tion, provided that all states outside the set of B states
are included. In our case these states are all included in
the form of the projector |0 〉〈 0 |, which does not take
into account their coherence. In contrast to the classical
one-bit case, for a TLA they do not carry any coherent
information because of the complete loss of coherence.

Γ 2 4Ω2–

A

A

A

A

# P̂A ( P̂A 0| 〉 0〈 |Tr 1 P̂A–( ) ( 1 P̂A–( ),+=
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Considering the coherent information transmitted
from one part A to the part B of a system, whose state
depends on time, we are dealing with a superoperator of
this channel of the form

(15)

with a unitary temporal resolution operator U(t) and
selection superoperators #A and #B of the subsystems
A, B. Here the selection superoperator #A is presented
only for the possibility of determining the complete
superoperator of the channel irrespective of the form of
the input density matrix. However, if the input density
matrix  is determined only in the corresponding
subspace HA of the complete space H, this superopera-
tor can be dropped.

Let us assume that the dynamical evolution of the
system is given by a set of eigenstates |k 〉  and the corre-
sponding Bohr frequencies ωk. Then, representing the pro-
jectors in terms of the corresponding input |ψl〉 and output
|ϕm〉 wave functions, we obtain from Eq. (15) the represen-
tation of the temporal evolution specified in the form

(16)

Let us consider the case of an orthogonal choice of sub-
sets of input/output wave functions, which is of special
interest. Then, if there is only one common state |φ〉  in
the sets |ψl 〉, |ϕm 〉  and U(t0) = 1 for a time t0, we obtain
the expression

which means that the input system reduces to a classi-
cal bit of information, associated with the states |φ〉  and
|0〉 , and no coherent information is transmitted into the
system B. Nonetheless, it appears in the process of tem-
poral evolution, provided that the eigenstates |k 〉  of the
operator U(t) are different from the input/output states
|ψl 〉, |ϕm 〉 . Therefore, the information capacity of the
channel is due to the quantum entanglement of the
input and output on account of the corresponding con-
tribution to the Hamiltonian systems.

To illustrate the exchange of coherent information
in the channel of the type described, we shall consider

#AB #B#0 t( )#A, #0 t( ) U t( ) ( U 1– t( )= =

ρ̂in

#AB t( ) ŝll' t( ) 0| 〉 0〈 | ∫+
ll' A∈
∑=

× ϕm ψl t( )〈 | 〉 ψl' t( ) ϕm〈 | 〉
m B∉
∑ ψl〈 | ( ψl'| 〉 ,

ŝll' t( ) ϕm ψl t( )〈 | 〉 ψl' t( ) ϕm'〈 | 〉 ϕm| 〉 ϕm'〈 |,
mm' B∈
∑=

ψl t( )| 〉 iωkt–( ) k ψl〈 | 〉 k| 〉 .exp
k

∑=

#AB t0( ) φ| 〉 φ〈 | ( φ| 〉 φ〈 | 0| 〉 0〈 | ϕm〈 |
ϕm φ≠
∑  ( ϕm| 〉 ,+=
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the typical intraatom channel formed by two two-level
systems constructed from two pairs of orthogonal states
A = {|ψ0 〉, |ψ1 〉}  and B = {|ψ0 〉, |ψ2 〉}  of the same atom.
As an example we shall use the spinless model of the
hydrogen atom (Fig. 3): ψ0 is the ground s state with
n = 1, ψ1, 2 correspond to the s state with l = 0, m = 0
and the p state with l = 1, m = 0 of the first excited state
n = 2.

In the absence of an external field the quantum
channel does not transmit any coherent information,
since the states l = 0, m = 0 and l = 1, m = 0 are not cou-
pled. In the absence of an external electric field applied
along the Z axis, the desired pair of four initially degen-
erate states with n = 2 splits as a result of the Stark
effect and transforms into a pair of new eigenstates

and the input state l = 0 oscillates with the frequency of
the Stark shift:

Therefore, on account of the applied electric field, the
input states become entangled with the output states,
which as a result contain coherent information about
the input states.

In our model, Eq. (16) gives the operators  in the
form of a 3 × 3 matrices, where the third columns and
rows correspond to a fictitious “vacuum” state |0〉:

1| 〉 ψ1| 〉 ψ2| 〉+( )/ 2, 2| 〉 ψ1| 〉 ψ2| 〉–( )/ 2==

ψ1 t( )| 〉 ωst( ) ψ1| 〉cos ωst( ) ψ2| 〉 .sin+=

ŝkl

ŝ11

1 0 0

0 0 0

0 0 0 
 
 
 
 

, ŝ12

0 ωst( )sin 0

0 0 0

0 0 0 
 
 
 
 

,= =

ŝ21

0 0 0

ωstsin 0 0

0 0 0 
 
 
 
 

,=

m = 1
n = 2

m = –1m = 0l = 0
l = 1

n = 1

A B

|1〉

|2〉

Fig. 3. Spinless model of the hydrogen atom. The informa-
tion channel is formed from the input forbidden (nlm 
n'l 'm') transition 100–200 and the output dipole-active tran-
sition 100–210.
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Zero values of the operators  and  correspond to
the absence of coherent information at t = 0, i.e., the
absence of entangled states. Choosing the input density

matrix in the form  = /2, we obtain the correspond-
ing input–output density matrix:

where x = sin(ωst) and the output density matrix  is
diagonal with diagonal elements 1/2, x2/2, and (1 –
x2)/2.

Calculating the nonzero eigenvalues (1 ± x2)/2 for
 and the entropies Sout and Sα, we obtain the coherent

information

This function is greater than zero everywhere with the
exception of the point x = 0, where the coherent infor-
mation is zero, and its maximum is one qubit with x = ±1,
i.e., for the precession angle ωst = ±π/2. Hence it is evi-
dent that the coherent information about the states of
the forbidden dipole transition is in principle accessible
via the dipole transition using the Stark effect. Its aver-
age value in time is 〈Ic〉  = 0.46 qubits.

The estimates made above indicate the potential
possibility of observing experimentally the coherent
effects due to the influence of the forbidden electronic
transition on a dipole transition. Forbidden transitions
were studied in [12, 13] as a potential source of infor-
mation about the breakdown of spatial symmetry due to
an interaction via weak neutral currents [14, 15]. If
Ic = 0, then in principle only an incoherent effect of a
forbidden transition via the population of the ground
state n0 is possible. In this case only one parameter—
the population—can be measured, while the exact
knowledge of the phase requires Ic = 1.

ŝ22

0 0 0

0 ωst( )sin
2

0

0 0 ωst( )cos
2

 
 
 
 
 
 

.=

ŝ12 ŝ21

ρ̂in Î

ρ̂α

1
2
--- 0 0

x
2
--- 0 0

0 0 0 0 0 0

0 0 0 0 0 0

x
2
--- 0 0

x2

2
----- 0 0

0 0 0 0 0 0

0 0 0 0 0
1 x2–

2
------------- 

 
 
 
 
 
 
 
 
 
 
 
 
 

,=

ρ̂out

ρ̂α

Ic 1 x2+( ) 1 x2+( )2log x2 x2( )2log–[ ] /2.=
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6. EXCHANGE OF COHERENT INFORMATION 
BETWEEN TWO CLOSED QUANTUM SYSTEMS

A variety of results associated with the exchange of
coherent information between two atomic qubits,
including analysis of the problem from the standpoint
of the measure of quantum entanglements [16], analy-
sis of the problem of eavesdropping [17], and a set of
various experiments proposed in order to create a con-
trollable entanglement in a system of two atoms [18,
19], has been published in the last few years. From the
information standpoint coherent information
exchanged in a system of two TLA coupled by a quan-
tum channel depends on the specific form of the trans-
formation realized by the quantum channel as well as
on the initial states of the TLA. It is natural to take as
the initial state the product of independent density
matrices of the atoms: .

In this section we give a systematic analysis of the
processes leading to exchange of coherent information
between two initially independent quantum systems.
The following are included: (1) two unitarily coupled
TLA (Section 6.1), (2) two TLA coupled by the quan-
tum measurement procedure (Section 6.2), (3) an arbi-
trary system and its duplicated state (Section 6.3),
(4) TLA and a photon field in free space (Section 6.4),
and (5) two TLA interacting via the vacuum photon
field (Section 6.5).

6.1. Two Unitarily Coupled Two-Level Atoms

We discuss first a noiseless deterministic quantum
channel coupling two TLA (Fig. 1b). It can be
described by a unitary two-atom transformation, given
by the matrix elements Uki, k'i ' , k, i, k', i' = 1, 2. Then the
superoperator of the transformation of channel #, giv-
ing the mapping    = , can be written in
terms of the substitution symbol using the relation (6)
with the operators

represented in accordance with Eqs. (8) and (12), by the
matrix elements # in the form

(17)

The relation

holds and gives the correct normalization, and the pos-
itiveness of the block matrix

guarantees positiveness of #.

ρ̂1 2+ ρ̂in ρ̂2⊗=

ρ̂in ρ̂out ρ̂2'

ŝkl Skl µν, µ| 〉 ν〈 |,
µν
∑=

Skl µν, ρ2αβUmµ kα, Umν lβ,* .
mαβ
∑=

Trŝkl Skl µµ,

µ
∑ δkl= =

ŝkl( ) ŝ11 ŝ12

ŝ21 ŝ22 
 
 

=
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For a transformation of the form U = U1 ̂  U2, which
does not lead to the creation of entangled states, Eqs. (6)
and (17) give # = Tr(, which signifies a transfor-

mation of the initial state  of the first TLA into the

final state, which is not entangled with the state  =

U2  of the second TLA.

Relation (17) can be simplified by considering pure
states , so that in combination with the possibility of
choosing an arbitrary transformation U without entan-
glement it is useful, specifically, to single out especially
the case of the state ρ2αβ = δαβ . Taking account of

the linearity of the dependence of Skl, µν on  and the
convexity of the coherent information Ic as a function of
# [20], the analysis of Eq. (17) can be reduced to anal-
ysis of the relation

(18)

which means that the quantum channel is described
only by a unitary transformation U. Here the summa-
tion extends only over the states |m 〉  of the first atom
after the entangling transformation.

The coherent information transmitted, in the present
system of two coupled TLA with

is shown in Fig. 4. It is a convex function of  with a
maximum at the boundary, ρ11 = 0.1. Just as in the case
of one TLA, the coherent information preserves the
typical threshold character of the dependence on the
coupling angle, which describes the degree of coherent
coupling of two TLA with respect to independent fluc-
tuations of the second TLA.

6.2. Two Two-Level Atoms Coupled
by the Quantum Measurement Procedure

We shall consider a special type of quantum channel
coupling two TLA,4 which can be described by a super-
operator #, defining the quantum measurement proce-
dure. This procedure is related with a different
approach to defining the quantum information [21],
based on the so-called measured information.

Let us consider first a channel consisting of two
identical two-level systems. In terms of the wave func-
tion the corresponding transformation of the complete
measurement of the state of the first TLA has the form

(19)

4 In reality, the results of the present section are valid not only for
two TLA but also for any quantum systems with finite dimension.

ρ̂2'

ρ̂1'

ρ̂2'

ρ̂2 U2
+

ρ̂2'

δαα0

ρ̂2'

Skl µν, Umµ kα0, Umν lα0,* ,
m

∑=

ρ̂in Î/2, ρ̂2( )12 ρ̂2( )11 1 ρ̂2( )11–[ ]= =

ρ̂2

ψ ϕ⊗ ai φi| 〉 φi| 〉 , ai∑ φi ψ〈 | 〉 .=
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This transformation describes the entanglement of cer-
tain basis states |φi 〉 , which does not depend on the ini-
tial state ϕ of the second TLA. The latter is an indicator
of the measuring setup, preserving completeness of
information on the basis states in the initial state ψ =

ai|φi 〉 . Relation (19), given in the form of a single-
valued transformation of the wave function, in reality is
not a linear transformation with respect to ϕ and there-
fore cannot represent a deterministic transformation,
not being unitary. The corresponding representation in
terms of the two-atom density matrices has the form

(20)

It is linear with respect to  and satisfies the standard
conditions of physical realizability [7, 20], i.e., com-
pletely positive and preserves normalization. The den-
sity matrix has the form pi|φi 〉|φi 〉〈φ i|〈φi|, so that

S( ) = S( ), and in accordance with the relations of
Section 3 the one-time coherent information is zero.
This is due to the classical nature of the information,
represented here only by the classical indices i.

The quantum transformation superoperator cou-
pling two TLA in the case of a two-time channel can be
obtained from the relation (6) with  = |φk 〉〈φk|δkl,
〈 k|  〈φk| and |k 〉  |φk 〉 , which after taking the
trace with respect to the first TLA and replacing  by
the substitution symbol ( becomes

(21)

where  = |φk 〉〈φk| are orthogonal projectors, repre-
senting the eigenstates of the “indicator” variable of the

∑

ρ̂12 φi〈 | φj〈 |ρ̂12 φj| 〉 φi| 〉 φi| 〉 φi| 〉 φi〈 | φi〈 |.
j

∑
i

∑
ρ̂12

∑
ρ̂12 ρ̂2

ŝkl

ρ̂12

} P̂kTr1Êk(,
k

∑=

P̂k

1.0

0.8

0.6

0.4

0.2

0
0.2 0.4 0.6

0.8 1.0
0

0.5
1.0

1.5

Ω/t

Ic, qubit

Population, ρ11

Fig. 4. Coherent information transmitted between two TLA
coupled by a unitary transformation, as a function of the
matrix element ρ11 of the diagonal initial density matrix of
the second TLA and the procession angle ϕ = Ωt.
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second TLA, and  = |φk 〉〈φk| describes the orthogonal
expansion of unity. It is constructed from the same
operators, giving here the transformation of the quan-

tum-classical reduction Tr1  ( = 〈φk| ( |φk 〉 , which
gives the procedure for obtaining the classical informa-
tion k from the first system. Applying the transforma-
tion (21) to  and using Eq. (9), we obtain for the cor-
responding output and input–output density matrices

(22)

where

are the eigenvalues of the probabilities for the reduced
density matrix, and

are the normalized modified input states, coupled after
the quantum measurement procedure with the output
states |φk 〉 . It should be noted especially that, as follows
from Eqs. (22), there is no exchange of coherent infor-
mation in the system, since the vectors |φk 〉  are orthog-
onal and the entropies of the density matrices (22) are
obviously the same. Conversely, the measured informa-
tion, introduced in [21], in this case is different from
zero.

There is no difficulty in extending this result to the
case of a channel of a more general form, where the
output system has a structure that is different from the
initial system and is described by a different Hilbert
space. The latter difference is taken into account by
replacing in the preceding relations the basal states |φi 〉
of the second system by a different orthogonal set |ϕi 〉  =
V |φi 〉 , where V is the isometric transformation from the
Hilbert space of the states H1 of the first system into a
different Hilbert space H2 of the second system. After
simple, obvious transformations, we obtain the same
final result—the absence of coherent information trans-
mitted in such a channel. This result is characteristic for
coherent information, in contrast to other information
approaches (see, e.g., [21]).

It is of interest to discuss quantum-measurement
transformations of a more general type, specifically, the
procedure of indirect (generalized) measurement, first
introduced in application to problems of the theory of
optimal quantum detection and measurement in [22],
and in a more general form of the nonorthogonal

expansion of unity (dλ) in [23] ( (dλ) is the equiv-

Êk

Êk

ρ̂in

ρ̂out p̃k φk| 〉 φk〈 |,
k

∑=

ρ̂α p̃k πk| 〉 φk| 〉 φk〈 | πk〈 |,
k

∑=

p̃k φk〈 |ρ̂in φk| 〉 pi φk i〈 | 〉 2

i

∑= =

πk| 〉 pi/ p̃k φk i〈 | 〉 i| 〉
i

∑=

%̂ %̂
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alent of a positive-definite operator-valued measure
(POVM), used in semiclassical variants of quantum
information theory and quantum theory of optimal
detection/measurement [5, 24, 25]). The corresponding
transformation of the indirect measurement is obtained
by averaging the transformation of the direct measure-
ment, applied not directly to the system of interest but
rather to its combination with an arbitrary independent
system. In the general case the indirect measurement
superoperator can be represented as

(23)

where  describe an arbitrary set of orthogonal pro-

jectors, and  is a general nonorthogonal expansion

of unity in the space H (POVM). We note that  =
|ϕq 〉〈ϕ q| describes the case of a “pure” POVM, first
introduced precisely in this form in the quantum theory
of detection/measurement [22]. It corresponds to a
complete measurement in H ̂  Ha with the choice of the
singular density matrix for the initial state of an auxil-

iary independent system  = δb0δbc.

In Eq. (23) the classical index q represents the infor-
mation exchange between the initial state and final state
of the output. Since the number Nq of values of q can be
greater than the dimension dim H, it can be inferred that
a definite amount of coherent information might be
attained as a result of this excess. The corresponding
output and input–output density matrices have the form

(24)

where  = Tr  describe the probabilities of
states determined by indirect measurement. For the
case of complete indirect measurement, based on the
quantum analog [2] of the classical theorem of no
increase in information in successive transformations
of data and on the above-proved result concerning the
complete direct measurement, it is not difficult to sub-
stantiate theoretically and confirm by numerical calcu-
lations that it is impossible to obtain coherent informa-
tion. Therefore, to obtain as a result of a measurement
procedure a nonzero amount of coherent information it
is necessary to use incomplete (“soft”) quantum mea-
surements which require an independent, more detailed
investigation.

6.3. Quantum Duplication Procedure

In counterpoint to the above-studied dequantizing-
type measurement procedure, determined by the trans-

} P̂qTr%̂q(,
q

∑=

P̂q

%̂q

%̂q

ρbc
a

ρ̂out p̃qP̂q,
q

∑=

ρ̂α pi p j j〈 |%̂q i| 〉 P̂q i| 〉⊗ j〈 |,
qij

∑=

p̃q %̂q ρ̂in
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formation (20), which completely destroys coherent
information, here we shall examine a transformation in
a channel, shown in Fig. 1c, which preserves the coher-
ent information:

It does not ignore the phase relations between the vari-
ous φi because of the use of the off-diagonal matrix ele-

ments of the input density matrix  = .

For the initial density matrix in the form of a product
 ^ , in terms of the transformation   

from H to H ^ H the corresponding superoperator has
the form

(25)

This superoperator determines the transformation of a
coherent measurement in counterpoint to an incoherent
measurement, studied in [21]. The transformation of the

coherent measurement converts  into an -indepen-
dent state

(26)

which results in duplication of the eigenstates φi  of the
input by the same states of the indicator variable

The pure input states transform into pure states of the
composite (1 + 2) system by means of duplication of
the indicator states:

which repeats the mapping (19), which gives a multi-
valued description of the corresponding superoperator
transformation. Of course, only the input states equal to
the eigenstates φk  of the chosen indicator variable are
duplicated without distortion as a result of the incom-
patibility of the nonorthogonal states; this is the basic
theorem of the impossibility of quantum cloning [26].
The entropy of the output state with density matrix

(26), possessing the same matrix elements as , obvi-
ously is identical to the entropy of the input state, Sout =

Sin = S[ ], on account of the conservation of the
coherence of all pure input states.

For combined input–output states the transforma-
tion (25) leads to the density matrix (9) in the space H ^
H ^ H of the form

(27)

ρ̂12 ρ̂12' φi〈 |Tr2ρ̂12 φj| 〉 φi| 〉 φi| 〉 φj〈 | φj〈 |.
ij

∑=

ρ̂1 ρ̂in

ρ̂in ρ̂2 ρ̂in ρ̂12'

4 φi| 〉 φi| 〉 φj〈 | φj〈 | φi〈 | ( φj| 〉 .
ij

∑=

ρ̂in ρ̂2

ρ̂out ρ̂12' φi〈 |ρ̂in φj| 〉 φi| 〉 φi| 〉 φj〈 | φj〈 |,
ij

∑= =

k̂ k φk| 〉 φk〈 |.
k

∑=

ψ φi ψ〈 | 〉 φi| 〉 φi| 〉 ,
i

∑

ρ̂in

ρ̂in

ρ̂α φk| 〉 φk| 〉 φl〈 | φl〈 | p̃k p̃l χk| 〉 χ l〈 |,⊗
kl

∑=
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where  and |χk 〉  are the same as above; this makes it
possible to construct a spectral expansion of the density
matrix in the form

Keeping in mind the fact that the first term of the tensor
product in Eq. (27) is a set of transition projection oper-

ators , it is easy to prove the alge-
braic rule used for an arbitrary scalar function f:

where  = ( ) is a block matrix, and

Here  = ( |χk 〉〈 χl |), which equals simply

||χ〉〉〈〈 χ||+ with ||χ〉〉ki = χki, since this corresponds to
a vector in the space H ^ H. The eigenvalues λk of this
matrix are {1, 0, 0, 0} with a single nonzero eigenvalue,
corresponding to the vector ||χ〉〉.

A calculation of the exchange entropy gives Se = 0
and therefore Ic = Sin. This means that the quantum
duplication procedure does not decrease the volume of
coherent information in the channel 1  (1 + 2) irre-

spective of whether or not the indicator  is compatible

with the input density matrix, i.e., [ ] = 0.

If the channel considered is reduced to the channel
shown in Fig. 1b and studied in the preceding section
by taking the trace over the first or second system in
Eq. (26), we obviously arrive at the measuring proce-
dure examined in Section 6.2. As a result, we can con-
clude that coherent information is not associated with
each system separately, i.e., it is strongly coupled with
both systems. The specific nature of the quantum infor-
mation, studied above, can be used, specifically, in
algorithms for correcting quantum errors [27] or for
producing stable entangled states [28].

6.4. Two Level Atom–Vacuum Field Channel

We now consider the interaction between a TLA and
a vacuum electromagnetic field, i.e., the process of
electromagnetic emission, as an information channel
(Fig. 1b), which compared with a TLA in a given laser
field (see Section 4) introduces a new object—the pho-
ton vacuum field—as the output.

For this purpose we shall employ a reduced model
of the field based on the reduction of the Hilbert space
in the Fock representation (Fig. 5). In a more general

p̃k

ρ̂in p̃k χk| 〉 χk〈 |.
k

∑=

P̂kl P̂klP̂mn, δlmP̂kn=

f P̂kl

kl

∑ R̂kl⊗
 
 
 

P̂kl

kl

∑ f R̂( )kl,⊗=

R̂ R̂kl

Trf P̂kl

kl

∑ R̂kl⊗
 
 
 

Trf R̂( ).=

R̂ p̃k p̃l

p̃k

k̂

k̂ ρ̂in,
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terminology, this problem corresponds to the problem
of the dynamics of the interaction of a two-level system
with a multimodal system of linear oscillators [29]. The
solution of the latter problem on long-time scales, to
which we shall confine our attention here, corresponds
to the standard description of the emission of a single
photon. Moreover, for purposes of information analysis
of a system consisting of an atom and a field, there is no
need to describe the coherent dependence of the wave
function ψ0(k, λ) of the photon on the photon wave vec-
tor (and polarization), since only the total probability of
emission of the photon is important.

In the basis of states of the free atom and the Fock
states of the free field for a vacuum initial state α0 = 0
we obtain from the relation (18)

where the Greek indices are used to denote states of the
photon field, which in general correspond to the num-
ber of photons and their spatial coordinates or wave
vectors. The calculation of this superoperator, per-
formed on the basis of a unitary matrix of the temporal
evolution of the atom–field system with matrix ele-
ments Umµ, k0, is illustrated in Tables 1 and 2.

Choosing ψ0(k, λ) as the basis element of a single-
photon subspace of states of the field reduces the matrix

Skl µν, Umµ k0, Umν l0,* ,
m

∑=

Atomic
states

Fock states 
of the field

|1〉a

|0〉a |0〉

|1〉kλ

|2〉k1λ, k2λ

c1 ψ0(k
, λ)

Fig. 5. Structure of the compound Hilbert space of the
atom–field system. For the vacuum initial state of the field
both atomic states and only two Fock states of the field ( |0〉
and |1〉) are included in the dynamics of the atom–field com-
posite system, which can be defined by only two states
|0〉a|1〉kλ and |1〉a|0〉 , described by time-dependent functions
ψ0(k, λ) and c1, respectively.
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Skl, µν of the superoperator to a nonoperator transforma-
tion matrix, which in terms of the matrices  has the
form

(28)

where |c1|2 = exp(–γt) describes the decay of the popu-
lation of an initially completely populated excited state
of the atom, and

describes the total probability of detecting a photon. It
follows from Eqs. (28) that the structure of the photon
is of no significance, and the transmitted information is
determined only by the probability of emission of a
photon by the time t. This reduction of the photon field
(only the photon numbers µ, ν = 0, 1 are important)
reduces it to an equivalent two-level system.

Applying the transformation (28) to the input den-
sity matrix

where we have confined ourselves to the case of purely
real off-diagonal matrix elements, we obtain the output
density matrix

and the corresponding input–output density matrix,
which for the case ρ12 = 0 has the form

ŝkl

ŝ11
1 0

0 0 
 
 

,=

ŝ12
0 1 e γt––( )1/2

0 0 
 
 

,=

ŝ21
0 0

1 e γt––( )1/2
0 

 
 

,=

ŝ22
e

γt–
0

0 1 e γt–– 
 
 
 

,=

ψ0 k λ,( ) 2∑ kd∫ 1 γt–( )exp–=

ρ̂in
ρ11 ρ12

ρ12 1 ρ11– 
 
 

,=

ρ̂out
ρ11 ρ22e γt–+ ρ12 1 e γt––( )1/2

ρ12 1 e γt––( )1/2 ρ22 1 e γt––( ) 
 
 
 

,=
ρ̂α

ρ11 0 0 ρ11ρ22 1 e
γt–

–( )[ ]
1/2

0 ρ22e γt– 0 0

0 0 0 0

ρ11ρ22 1 e
γt–

–( )[ ]
1/2

0 0 ρ22 1 e
γt–

–( ) 
 
 
 
 
 
 
 

.=
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For t  ∞ this expression gives a completely
entangled state (in the sense of the absence of classical
correlations, since it is a pure state) of the atom–photon
system, leading to transfer to the photon of coherent
fluctuations of the atomic state, which are equivalent to
a mixed ensemble. The corresponding eigenvalues are

λα = {0, 0, 1 – ρ22exp(–γt), ρ22exp(–γt)}.

The nonzero values describe the probabilities of atomic
states at time t. The eigenvalues for the output density
matrix (photon + vacuum)  are

λout = {ρ22[1 – exp(–γt)], 1 – ρ22[1 – exp(–γt)]}

and describe the probability of observing whether the
photon is emitted or not. The set of quantities presented
above determines the characteristic values of the prob-
abilities of the combined input–output density matrix
and the partial density matrices. The coherent informa-
tion given by the corresponding entropy difference
assumes the form

(29)

where x = exp(–γt). This formula is applicable for
Ic > 0, while in the opposite case Ic = 0. The corre-
sponding critical moment in time is determined by
the relation exp(–γt) = 1/2, which corresponds to the
probability 1 – ρ22[1 – exp(–γt)] of the absence of a
photon being equal to the probability 1 – ρ22exp(–γt) of
the bottom atomic level being occupied.

The results of the calculation of the coherent infor-
mation are presented in Fig. 6 for two special cases:
ρ12 = 0 (Fig. 6a) and ρ11 = 1/2, 0 ≤ ρ12 ≤ 1/2 (Fig. 6b).
It is easy to see from Fig. 6a that the coherent informa-
tion is symmetric with respect to the symmetry point
ρ11 = 1/2. A further increase of the population of the
excited state ρ22 = 1 – ρ11 and the corresponding level
of photon emission does not increase the amount of
coherent information. This is due to the decrease in the
input entropy, which determines the potential maxi-
mum of coherent information. For the same reasons,
the coherent information decreases if a nonzero coher-
ent correction is made to the initial density matrix of the
atom in the form of a state with maximum entropy and
vanishes for a purely coherent initial state (Fig. 6b).

In accordance with Section 3 and taking account of
the fact that the initial state of the field is pure, the one-
time information is equal to the entropy difference only
for the photon field represented by the density matrix

 and the initial atomic state represented by . For

ρ̂out

Ic xρ22 xρ22( )2log=

– 1 ρ22– xρ22+( ) 1 1 x–( )ρ22–[ ]2log

+ 1 xρ22–( ) 1 xρ22–( )2log

– 1 x–( )ρ22 ρ22 xρ22–( ),2log

ρ̂out ρ̂in
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a pure initial state of the atom in the form of an excited
state |2〉  we obtain for all times the nonzero coherent
information

which gives one qubit for the time when x = 1/2 and the
population of the excited state coincides with the prob-
ability of emission of a photon.

6.5. Atom-to-Atom Transmission of Coherent 
Information Via a Free Vacuum Field

Let us consider a quantum channel of the type 1  2
(Fig. 1b), where information is transferred from one
atom to another through free space by emission of a
photon, assuming that initially the second atom is the
ground state. In addition, we introduce a limitation on
the scale of the times considered, excluding from our
analysis fast processes occurring on times of the order
of and less than the period of atomic oscillations, i.e.,
ignoring the discrete nature of the electromagnetic sig-
nal that is associated with interatomic retardation [30–
33]. In this approximation the problem under consider-
ation is a Dicke problem [34], for which the solution in
terms of two time-decaying symmetric and antisym-

Ic x x2log– 1 x–( ) 1 x–( ),2log–=

Table 1.  Unitary transformation atom–field–atom–field
Umµ, kα for a vacuum initial state of the photon field; the indi-
ces m and k enumerate the atomic photons, µ and α are the
photon numbers

kα
mµ

00 01 10 11

00 1 0 0 0

01 – – – –

10 0 ψ0(k, λ) c1 0

11 – – – –

Note: The second and fourth rows are the matrix elements that do
not appear in the matrix elements Skl, µν which are computed
(see Table 2).

Table 2.  Atom–field superoperator Skl, µν, setting the trans-
formation |k〉〈 l|  |µ〉〈ν|. The indices k and l enumerate the
atomic photons, and µ, ν are the photon numbers

kl
µν

00 01 10 11

00 1 0 0 0

01 0 0 ψ0(k, λ) 0

10 0 (k, λ) 0 0

11 |c1|2 0 0 ψ0(k, λ) × (k', λ')

ψ0
+

ψ0
+
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the atom: (a) the density matrix is diagonal with matrix element ρ11 of the ground state; (b) the density matrix is described by the
sum of /2 and the real (“cosine”-type) coherent addition in the form of the off-diagonal term ρ12 .Î σ̂1
metric Dicke states ||s〉〉  = (|1〉|2〉  + |2〉|1〉)/ , ||a〉〉  =

(|1〉|2〉  – |2〉|1〉)/  and a stable vacuum state ||0〉〉 =
|1〉|1〉  in the following form is well known:

(30)

where c0(t) is the complex amplitude of the vacuum
component |1〉|1〉 , including the incoherent correction
due to the spontaneous radiative transitions from
excited atomic states, ξ(t) is the uniformly distributed
phase of atomic oscillations, γs, a and Λ are the decay
rates and the frequency splitting (frequency shift),
respectively, and cs, a are the complex amplitudes of the
Dicke states.

In terms of multiplicative combinations of individ-
ual atomic states |i〉| j〉  for the corresponding amplitudes
of the initial states c12(0) = 0 and c22(0) = 0 the dynam-
ics of the system under study is described in accordance
with the dynamics of Dicke states, determined by the
relations (30), for the following equations:

2

2

cs t( ) cs 0( ) γs/2 iΛ+( )t–[ ]exp ,=

ca t( ) ca 0( ) γa/2 iΛ+( )t–[ ]exp ,=

c0 t( ) c0 0( )=

+ cs 0( )2 ca 0( )2 cs t( )2– ca t( )2–+[ ]1/2
eiξ t( ),

c11 t( ) c11 0( ) f t( )eiξ t( )c21 0( ),+=

c21 t( ) =  f s t( )c21 0( ), c12 t( ) f a t( )c12 0( ),=

c22 t( ) 0,=

f t( ) 1 γst–( )exp γat–( )exp+[ ] /2–{ } 1/2,=

f s t( ) γs/2 iΛ+( )t–[ ]exp{=

+ γa/2 iΛ–( )– t[ ] } /2,exp
JOURNAL OF EXPERIMENTAL 
Using these expressions for the input operators of the
form ck1(0) (0)|k〉〈 l | for the first atom and then aver-
aging them over the final states of the first atom and
fluctuations of the atomic field (the latter are repre-
sented here only by the variable ξ(t)), we obtain the
symbolic representation of the superoperator of the

transformation of the channel (0)  (t) =

#(t) (0) and the corresponding operators  in the
form

(31)

To make the problem more concrete we shall con-
sider two identical atoms with parallel dipole moments,
directed perpendicular to the vector connecting the
atoms under study. Then only two dimensionless vari-
ables are important: γt, where γ describes the radiative

f a t( ) γs/2 iΛ+( )t–[ ]exp{=

– γa/2 iΛ–( )– t[ ] } /2.exp

cl1*

ρ̂ 1( ) ρ̂ 2( )

ρ̂ 1( ) ŝkl

# t( ) 1| 〉 1〈 | ( 1| 〉 1〈 | f t( )2 f s t( ) 2+[ ] 1| 〉+=

× 2〈 | ( 2| 〉 1〈 | f a t( ) 2 2| 〉 2〈 | ( 2| 〉 2〈 |+

+ f a t( ) 2| 〉 2〈 | ( 1| 〉 1〈 | f a* t( ) 1| 〉 1〈 | ( 2| 〉 2〈 |,+

ŝ11
1 0

0 0 
 
 

, ŝ12
0 f a* t( )

0 0 
 
 

,= =

ŝ21
0 0

f a t( ) 0 
 
 

,=

ŝ22
f t( )2 f s t( ) 2+ 0

0 f a t( ) 2
 
 
 
 

.=
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Fig. 7. (a) Population of the excited state of the second atom and (b) the coherent information in a system of two atoms interacting
through free space as a function of the dimensionless time γt and the interatomic distance ϕ = ω0R/c. The input density matrix cor-
responds to a state with maximum entropy  = /2. ρ̂in Î
decay rate of an isolated atom, and a dimensionless
interatomic distance ϕ = k0R, where R is the distance
between the atoms and k0 is the modulus of the wave
vector corresponding to the frequency of the atom. The
dimensionless two-atom radiative decay rates and the
frequency shift due to the short-range dipole-dipole
interaction are described by the corresponding relations
[19, 28–33]:

γs, a/γ = 1 ± g, Λ/γ = (3/4)/ϕ3,

where g = (3/2)(ϕ–1sinϕ + ϕ–2cosϕ – ϕ–3sinϕ).

The corresponding coherent information can be cal-
culated as done in Section 6.4. Using the correspon-
dence exp(–γt)  f(t)2 + |fs(t)|2, the operators  for
the two cases are completely similar and the coherent
information, once again, is described by the same rela-
tion (29) with x = f(t)2 + | fs(t)|2. Nonetheless, in this
case the dependence considered, as compared with the
case of one atom (see Section 6.4), has specific qualita-
tive features on account of the oscillatory character of
the function |fs, a(t)|2 as a function of the interatomic
distance ϕ.

If there were no oscillations due to the quasielectro-
static short-range dipole-dipole interaction, i.e., if one
could set Λ = 0, then the coherent information would
always be zero, since the threshold x < 0.5 cannot be
reached. The parameter 1 – x corresponds to the popu-
lation of the excited state of the second atom with the
initial state |2〉  of the first atom, and for the optimal,
from the standpoint of information, value of the popu-
lation of the first atom ρ22, equal to half its initial pop-
ulation, we obtain 1 – x ≤ 1/4 and correspondingly x ≥
3/4. The oscillations in |fa(t)|2 lead to interference
between two decaying Dicke components, so that the
maximum of the population n2 = 1 – x also reaches
larger values right up to n2 = 1, and the corresponding
coherent information becomes different from zero.

ŝkl
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The functions n2(ϕ, γt) and Ic(ϕ, γt), calculated using
the relation (29), are shown in Fig. 7. They serve as a
universal measure for a system of two atoms, being
independent of their frequency or the magnitude of the
dipole moment (the latter is valid only for a fixed geom-
etry of the system, described above).

As one can see in Fig. 7a the population decays rap-
idly as a function of time because of the rapid decay of
the short-lived Dicke component. The population and
the coherent information undergoes strong oscillations
(Fig. 7b) for small interatomic distances ϕ. As ϕ  0
the population of the long-lived Dicke state remains
substantial for unlimited long times, but no coherent
information is associated with it because the other com-
ponent decays completely.

7. CONCLUSIONS
It was shown in this work that the concept of coher-

ent information can be used for obtaining the most gen-
eral description of the interaction between two real
quantum systems, including systems of qualitatively
different physical nature, and for determining the role
of quantum coherence in the composite system.

It was shown for a TLA in a resonant laser field that
coherent information in the system does not increase
with increasing intensity of the applied field, provided
that the relaxation processes themselves are not sup-
pressed.

The hydrogen atom was considered as an example
of the information exchange between subsystems of a
single system. It was shown that under the action of an
applied electric field coherent information exchange
occurs between forbidden and dipole-active atomic
transitions as a result of the interaction due to the Stark
effect.

It was shown for two unitarily coupled TLA that the
maximum possible value of the coherent information
Ic = 1 qubit is reached for maximum entanglement and
SICS      Vol. 91      No. 5      2000
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Ic = 0 for any type of measurement procedures studied
in Section 6.2.

It was shown for information exchange between
TLA and a free photon field in the process of emission
of electromagnetic radiation that the coherent informa-
tion reaches the threshold of nonzero values at the crit-
ical point of the decay exponential exp(–γt) = 1/2,
where the probability of there being no emitted photon
is equal to the population of the lower atomic state. At
the maximum the coherent information can reach the
value Ic = 1 qubit.

It was shown for information exchange between two
atoms by means of the vacuum field, when the atoms
are separated by a distance of the order of the wave-
length, that the coherent information is nonzero only as
a result of coherent oscillations between the Dicke
states, which are due to short-range dipole-dipole
quasielectrostatic interaction with spatial dependence
∝ 1/R3. In contradistinction to this, the semiclassical
information extracted using the quantum detection pro-
cedure is associated with population correlations [28].
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