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The applicability of classical concepts to light-induced nonadiabatic processes in polyatomic
molecules has been studied. The time dependence of the molecular density matrix in the Wigner
representation has been calculated, and an improved formula for the transition probability
per unit time, the basic formula for quasiclassical modelling of quantum jumps, has been derived.
The quantum nature of energy and momentum conservation during a quantum jump has
been investigated. We have demonstrated that the quasiclassical approximation is efficient in
modelling the dissociation of molecules under an intense laser beam. An investigation
of the light-induced dissociation of an HCl1 molecule is discussed. ©1996 American Institute
of Physics.@S1063-7761~96!00806-2#

1. INTRODUCTION

Molecules are interesting from the theoretical standpoint
because typical dynamic processes in them have both classi-
cal and quantum properties. Whereas the motion on a given
electronic level may be considered as a purely classical pro-
cess, the dynamics of electronic transitions is purely quan-
tum. Most calculations of molecular dynamics taking into
account all 3N vibrational and rotational degrees of freedom
(N is the number of atoms in a molecule! can be performed
using only the classical approach to a polyatomic system.
Basic analytical results related to this problem were obtained
long ago by Landau and Lifshits1 and Zener.2

The quantum-mechanical approach to the dynamics of
the electronic subsystem which is most simple and efficient
in computer simulations was proposed by Tully and Preston.3

It describes the electronic dynamics of a molecule as a set of
instantaneous quantum jumps between electronic levels. In
the case of a system with two electronic levels,u1& and
u2&, the classical equations of motion for nuclei are inte-
grated, then the electronic wave function along calculated
classical trajectories is found, and the probabilitiesaj j

2 of
finding the system in each electronic stateu j & ( j51,2) are
determined. The system switches from one potential surface
to another if the transition probability is larger than a number
from the interval (0,1) produced by a random-number gen-
erator. After the transition, corrections to atomic momenta
are added to satisfy the energy conservation condition for
each trajectory.

This algorithm and its modifications have been applied
to several physical problems.4–12 Its subject areas include the
dynamics of collisions of simple molecules, the dynamics of
clusters, light-induced dissociation of molecules in matrices,
the dynamics of a molecule in a solvent, and light-induced
conformation dynamics of multiple-atom molecules.

Blias et al.4 applied the algorithm of quantum jumps be-
tween surfaces of constant electronic energy to calculation of
the cross section of the collision-induced reaction

H1H2(n, j )→3H, wheren and j are specified vibrational
and rotational quantum numbers. Using the Tully–Preston
algorithm, they took into account the effects of interaction
with the first excited state, which has a conical crossing with
the ground state. They demonstrated that transitions between
energy surfaces lead to an increase in the cross section and
rate of dissociation from 2 to 44%. They compared calcula-
tions for two different directions along which the energy
conservation relation is satisfied during the transition on each
of the trajectories. Although the directions were almost or-
thogonal, the calculations did not depend on their choice.

A similar quantum-jump algorithm was proposed by
Kuntz.5 He used this procedure to account for the large ex-
perimental cross section of the collision-induced dissociation
reaction Ne1He2

1→Ne11He1He, whose dynamics is es-
sentially nonadiabatic because of the vibration in the initial
stage of the reaction.

This algorithm was also applied to the dissociation
Ar3

1→Ar2
11Ar.6 Various dynamical processes were inter-

preted in terms of charge transfer and nonadiabatic dynam-
ics, and the applicability of the algorithm to the dynamics of
Arn

1 clusters was demonstrated.
Stine and Muckerman7 compared various modifications

of the quantum-hop algorithm and proposed an algorithm of
their own based on a special switch criterion in the context of
the H2

11H2 collision. They demonstrated that the proposed
modified algorithm is consistent with the original Tully–
Preston algorithm and describes the process with an equal
degree of accuracy.

The dynamics of light-induced dissociation of HCl and
Cl2 molecules in crystalline Xe matrices was investigated by
Gersonde and Gabriel.8 They found out that nonadiabatic
transitions between adiabatic states occur in less than one
picosecond and lead to a fast recombination of fragments,
which results in a lower degree of dissociation. In such sys-
tems, there exists a specific mechanism which destroys co-
herence between the adiabatic states.

Another subject area of quantum-jump algorithms is the
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calculation of rates of nonadiabatic processes in condensed
materials.9,10 The central idea of the method is computer
simulation of molecular processes using the conventional
quantum-mechanical formula for transition rates~the so-
called ‘‘golden rule’’ of quantum mechanics! to calculate
transition rates due to nonadiabatic processes. The formula
can be expressed in terms of the quasiclassical approxima-
tion through a transformation which describes the system
evolution using ‘‘frozen’’ quantum-mechanical Gaussian
wave packets.11 It turned out that the Tully–Preston tech-
nique directly applied to this case did not yield sufficiently
accurate results.

In recent years we analyzed12 the light-induced isomer-
ization of an isolated stylbene molecule in the space of 3N
coordinates (N is the number of atoms!, including the dy-
namics of all 72 vibrational degrees of freedom, using com-
puter simulation and conventional molecular dynamics tech-
nique. Since quantum-mechanical description of the
electronic system of a polyatomic molecule is impracticable,
we simulated the internal conversion using a modified
Tully–Preston technique. We employed the approximate for-
mula derived by Miller and George13 for the transition prob-
abilities between electronic states along calculated classical
trajectories of nuclei. The transition probability at each mo-
ment was a function of only the energy difference between
the two states and their second derivatives at the respective
point of the classical trajectory. The point of conventional
phase space at which the molecule transfers from the excited
electronic to ground state is very important for the subse-
quent evolution of the ground state and final distribution of
reaction products.

Thus the critical problem is to describe in detail the dy-
namics of internal conversion as a random quantum-
mechanical process in terms of the density matrix. Most
theoretical studies in this field performed until now have
described the molecular dynamics in terms of wave
functions,13–18which is insufficient in the case of polyatomic
molecules when, generally speaking, additional noise is in-
troduced to simplify the description of a quantum transition
between two electronic states.

The paper presents an investigation based on the mo-
lecular dynamics described in terms of the density matrix
using the Wigner representation~Sec. 2!. A formula for the
density matrix has been derived. Its analysis, on one hand,
justifies the concept of quantum jumps between classical tra-
jectories on different surfaces of equal potential, on the other
hand, demonstrates that significant corrections to the Tully–
Preston algorithm are needed. In particular, we have inter-
preted the energy conservation condition in quantum transi-
tions differently. The resulting formula for the state
transformation due to a jump may be also reduced in specific
cases to the analytical formulas for the transition probability
proposed by Miller and George.13

2. QUASICLASSICAL STOCHASTIC REPRESENTATION OF
QUANTUM DYNAMICS

In this section we discuss the problem of two electronic
levels in a molecule. It can be generalized to the case of a

molecule in an intense IR field,19 which will be demonstrated
in Sec. 3. In the full HamiltonianĤ5T̂1V̂ the kinetic en-
ergy can be expressed as

T̂5T̂111T̂221T̂121T̂21, T̂kl5 P̂kT̂P̂l , ~1!

where P̂5Pk(q̂) are orthogonal projectors on thekth elec-
tronic eigenstatesck of the adiabatic potential operator
V̂5V1P̂11V2P̂2 , which are functions of the vibrational co-
ordinatesq̂ and timet. The diagonal elements

Ĥkk5 P̂kĤP̂k ~2!

describe motion on fixed adiabatic levels, whereas nondiago-
nal elementsĤkl5T̂kl correspond to electronic transitions
u1&→u2& andu2&→u1& due to nonadiabatic processes. These
elements are nonzero because the operatorsT̂ and q̂ are not
commutative, hence the respective perturbation is propor-
tional to the Planck constant\ and small if the dynamics on
a single level is quasiclassical.

Thus, the nonadiabatic interaction is, generally speaking,
weak, although the dimensionless parameter which charac-
terizes the applicability of the perturbation theory must be
estimated in each specific case. As concerns the dynamics on
a single electronic level described by the operator in Eq.~2!,
it is, apparently, controlled in the lowest-order approxima-
tion by classical equations with the Hamiltonian
Ĥk5T̂1V̂k , which does not include the nonadiabatic inter-
action. Heller20 and Stenholm21 described several approaches
to the problem of nonadiabatic dynamics, including quantum
effects on the dynamics of vibrations. In this paper, we only
discuss the real problems of computer simulation of poly-
atomic molecules.

In our approach, we use perturbation theory to first and
second order in the nonadiabatic interaction. In the case of
two electronic levels with the initial stateu1&, we obtain the
following expression for the diagonal element of the density
operator in the stateu2&:

r̂22~ t !5
1

\2E
0

tE
0

t

dt1dt2U2
21~t1!T̂21U1~t1!

3 r̂11
0
U 1

21~t2!T̂12U2~t2!. ~3!

Herer̂kk arekkth diagonal elements of the molecule density
matrix r̂, Uk(t) are operators for temporal evolution on the
kth electronic level due to the HamiltonianĤk .

In order to obtain quasiclassical equations of motion, we
must use an adequate mathematical description of the quan-
tum dynamics on a single electronic level. One of widely
used techniques of this kind is the Wigner representation22

based on a special representationf̂→ f (X) of quantum op-
eratorsf̂ in terms of classical functionsf of coordinates and
momenta,X5(q,p). Assume that a molecule is in the state
u1& at the time momentt50. Then we derive the following
equation using second-order perturbation theory and the
Wigner representation~see Appendix!:

Dw22~X,t !5E
0

t

dsS 2
2 ~ t2s!P ~s!S 2

1 ~s!w11~X,0!.

~4!
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Herewkl are density-matrix elements in the Wigner repre-
sentation,S 6

k (t)5 exp(L6
k t) are the evolution operators for

the kth levels defined by Eqs.~A2! and ~A3!, and

P5
1

\2E
2s

s

dtS 1
2 ~2t!~ T̂21(T̂12!S 1

1 ~t! ~5!

is the operator of the electronic transition, where the quan-
tum transformation (T̂21(T̂12) must be written in the Wigner
form, and integration may be performed in reality over infi-
nite limits. Equations~4! and ~5! describe not only the qua-
siclassical asymptotic form,13 but also all second-order quan-
tum effects. Equation~5! describes the operator of the
electronic transition rate calculated on a classical trajectory.
Nonetheless, it is demonstrated in the Appendix that the re-
sulting approximate expression for Eq.~5! is the same as in
Ref. 13 if the quasiclassical approximation is valid, i.e.,

P ~s!5^2̇u1&s
2
T ~Xs!, ~6!

where ^ 2̇u is the time derivative of the vector^2us , which is
a function of the coordinatesq(s), andP (s) is simply the
time-dependent density of the quantum-jump probability,
which can be expressed as the product of the squared ele-
ment of the nonadiabatic transition rate operator times the
effective durationT (Xs) of the nonadiabatic interaction be-
tween electronic levels at the pointXs . It can be expressed
as ~the derivation is given in Appendix!

T ~X!5
2\

A3pV12

K1/3~x!'
2A2p

31/6
\1/3

V̈12
1/3

e2x

x1/2 ,

x~X!5
4A2
3\

V12
3/2

V̈12
1/2
. ~7!

This approximation uses the exponential asymptotic form of
the Bessel functionK1/3(x) at largex. Miller and George13

used a similar expression with the exponential functione2x

to calculate the transition probability.
We calculate nondiagonal elements by means of first-

order perturbation theory. After similar calculations in the
quasi-classical approximation, we obtain the following equa-
tion for the dynamics on one electronic level:

w21~ t !5E
0

t

^2̇u1&sS
21~ t2s!w11~X,s!ds, ~8!

where the operator

S 21~t!5 expF2
i

\
~V21t2$H2 ,H1%t

2/2!G x̄21~t! ~9!

describes the transformation due to the combined potential of
two electronic levels, the exponential describes the phase
difference due to the energy gap between the two levels,
V21, and the operator

x̄ 21~t!5 exp@$~H11H2!/2,(%t#

describes classical motion due to the average potential gen-
erated by the two electronic levelsu1& andu2&. If the nondi-
agonal elements can be neglected, Eq.~4! describes molecu-
lar quantum jumps ~Fig. 1! in the quasiclassical

approximation forS 2
k (t). In this case the process is mod-

elled by integrating the classical equations of motion for nu-
clei, calculating the probability of the transition@Eq. ~6!#,
and switching to another potential surface if the transition
probability is higher than the number produced by a random-
number generator. Arguments in favor of the noncoherent
approximation for some objects are given in Refs. 3 and 23,
and some specific cases, in which coherence effects are es-
sential, are discussed in Refs. 24 and 25.

There is an apparent difference between our results and
calculations by Tully and Preston.3 Our scheme does not
explicitly contain the condition of energy conservation in
each quantum transition postulated by Tully and Preston.3 In
our opinion, their interpretation of the energy conservation
law is not correct because of the energy uncertainty in the
process of a nonadiabatic quantum jump. This uncertainty
takes place because the transition occurs between the initial
state, which is an eigenstate of the adiabatic Hamiltonian in
Eq. ~2!, and a superposition of eigenstates owing to nondi-
agonal elements in Eq.~1!, which are nonzero during the
time when the nonadiabatic interaction is important. The en-
ergy uncertainty determined by the finiteness of this time is,
according to Eq.~7!, comparable to or greater thanV12. This
uncertainty is inevitable because the nonadiabatic Hamil-
tonian does not commute with the adiabatic Hamiltonians
and causes energy nonconservation during the jump. None-
theless, the average change in the vibrational kinetic energy
can be calculated using Eq.~A8!, where the term with
]/]p corresponds to the momentum shift, but the physical
sense of this term is different from that of the energy con-
servation condition proposed by Tully. It accounts for the
momentum shift due to the force generated by the difference
between electronic potentials during the transition. This spe-
cific quantum shift is not directly related to the energy con-
servation; rather, it is an analogue of such relatively small
effects as the Lamb shift. It neither forbids the energy jump
nor significantly affects the dynamics of the process. The
transition operator in Eq.~6! is modified to describe the mo-
mentum shift because of the additional term
(1/4)V129 q̇t]/]p in Eq. ~A9!, derived from Eq.~A7! after the

FIG. 1. Energy levels of a quantum system described by the quantum-jumps
model. The system switches between the levels at random moments of time
t1 , t2 , . . . ,tn , . . . The motion between sequential quantum jumps at the
momentstn and tn11 is described in classical terms.
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above mentioned transformation of]/]p described by Eq.
~A8!:

P ~s!5^2̇u1&s
2E

2`

1`

dt expH 2
i

\ FV12~q!t

1
1

24
V129 ~q!q̇2t3G J S p~V129 q̇t2/8!, ~10!

whereq̇5p/m andS p(h) denotes the operator of momen-
tum shift p→p1h.

Equation~10! describes the interference properties of the
molecular state after the quantum transition. The larger the
momentum shift, the faster the phase oscillations of the cor-
responding component of the new electronic state. In reality,
large shifts do not occur because fast oscillations are washed
out, although at each moment of timet all shifts have equal
amplitudes, irrespective of their values. The typical momen-
tum shift can be estimated as

Dp'
1

8
V129 q̇T

2, ~11!

and, using Eq.~7!, we can estimate the corresponding kinetic
energy:

DEkin;V129 a
2/8,

wherea is the dimension of the jump area. This energy is of
the same order of magnitude asV12, and the energy is not
conserved in the motion along a given trajectory. To con-
clude our discussion of the momentum shift, we assert on the
basis of Eqs.~A2! and ~A3! that, at least from the formal
viewpoint, the vibrational dynamics during a quantum tran-
sition is controlled by the potential difference between lev-
els, rather than by their sequence in time, as was postulated
in Ref. 13. Really, we have two different time variables,
namelys5(t11t2)/2 andt5t22t1 , wheres corresponds to
the motion on a fixed level andt to the transition between
levels. The dynamics of a jump with respect to the variable
s can be treated in terms of classical theory only in the Mar-
kovian approximation, when jumps are considered to be in-
stantaneous, since the dynamics with respect to the variable
t is essentially quantum and is an analogue of the dynamics
of wave functions, rather than classical variables.

In order to verify our results, we considered a one-
dimensional model of a molecule with two electronic states
and a potential energy operator presented as a 232 array of
the form

Û5SU2~ x̂! DV

DV U1~ x̂!
D , ~12!

whereU1,2( x̂) andDV are the operators of unperturbed adia-
batic vibrational levels and the matrix element of interaction
between the levels, respectively. The elementsU1,2 are func-
tions of the vibrational-coordinate operatorx̂. The array in
Eq. ~12! corresponds to the previously introduced adiabatic
potentialsV1,2, which can be described in terms of its eigen-
values.

We have used the approximation

U2~x!5D2~x2p/2!22E2 ,

U1~x!52D1 sin
2@a~x2p/2!#, ux2p/2u,p/2

with a smooth extrapolation of the functionU1(x) outside
the quantum-jump region so that the motion on the lower
level should be finite. Exact solutions have been obtained for
this model using the Schro¨dinger equation and appropriate
techniques.30 The parameters selected for this model were
chosen so that, on one hand, they corresponded to the quasi-
classical nature of motion on the upper levelu2&, on the
other hand, they approximately described a one-dimensional
model of the torsion dynamics of the stylbene molecule:
D25105 cm21, D151.73104 cm21, DV550 cm21, and
E2<100 cm21.

Figure 2a shows quasi-classical energies corresponding
to mean coordinates of wave packets of both levels corre-
sponding to the initial condition in the form of a Gaussian
packet localized aroundx51 at t50. For comparison, the
average exact quantum-mechanical energy taking into ac-
count interaction between levels is also given. The difference
between it and the quasi-classical calculation on the upper
level is due to the fluctuation component of the kinetic en-
ergy, which equals\v2/4, wherev2 is the frequency of
harmonic oscillation on the upper level. Our result demon-
strates nonconservation of vibrational energy in the transition
from the upper to lower level, the energy defect being close
to the energy gap between the adiabatic levels. Figure 2b
demonstrates that in the region where the packet of the lower
level is formed, approximate conservation of momentum but
not energy takes place.

FIG. 2. ~a! Quasiclassical energy of wave packets of~1! lower and~2! upper
levels, and~3! average quantum-mechanical energy of the system versus
time; ~b! generalized average momentum on~1! lower and~2! upper levels
versus time.
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The transition probability per unit time calculated using
Eq. ~6! and the corresponding distribution of probability are
shown in Fig. 3. For the values ofD1,2 andDV given above
and an effective massMeff510237 g•cm2, the conditions
when the quasiclassical approximation can be applied to the
quantum jump are satisfied forE22E1>500 cm21, which
corresponds to the transition probabilityP<1023.

In Sec. 3, the analytical calculations are applied to com-
puter simulation of molecular dynamics in an intense non-
resonant optical field generated by a laser that leads to a
strong nonadiabatic interaction between electronic levels due
to the interaction between the optical field and electronic
dipole moment.

3. QUANTUM TRANSITIONS INDUCED BY A STRONG
LASER FIELD

Our approximation can be easily applied to simulations
of molecular dynamics induced by a strong laser field, when
the quantum nature of the vibrations is not important and the
quantum features of the process are only due to the nonzero
nondiagonal elements of the interaction Hamiltonian, which
are responsible for interaction among quantum levels.

We consider as an example the one-dimensional model
with two electronic levels. The potential energy of the sys-
tem can be described by the array in Eq.~12!, where

U1,2~ x̂,t !5@V1,2~ x̂!2d1,2~ x̂!EL~ t !#,

DV~ x̂,t !52EL~ t !d12~ x̂!,

V1,2( x̂) andd1,2( x̂) are the potential energies and dipole mo-
ments of the electronic levels, respectively, andEL(t) is the
laser-field intensity. The elements of the array are functions
of the vibrational coordinate operatorx̂. In the general case,
the nondiagonal elements in Eq.~12! describe the nonreso-
nant interaction between the laser field and dipole-moment
elementd12( x̂) responsible for the electronic transition. In
this case, the potentialsV1,2(q) determined in Sec. 2 corre-
spond to the eigenvaluesVg,e(x,t) of the array in Eq.~12!,
which is a function of time through the laser-field intensity.
At time tk52pk/vL , the field intensity is zero and the pa-
rameterVg,e(x,tk)5Vg,e(x,0), which is independent of the
field intensity, determines the coupling between the levels in
Eq. ~12!. At the same time, the second derivative

V̈eg;Veg9 ẋ
21Ve,g8 ẍ,

which determines the probability in Eqs.~4! and~6!, depends
sensitively on the field through the accelerationẍ, i.e., the
nonadiabatic interaction is proportional to the field intensity
EL(t). Moreover, when the dipole momentsd1,2( x̂) are non-
zero, the energy gapVg,e(x,t) at some timet may be signifi-
cantly smaller than its unperturbed value if the difference
Dd5d22d1 is larger than the dipole-moment nondiagonal
element. Therefore, the intense laser field is the natural driv-
ing force for quantum jumps when the field intensity is close
to zero.

In order to estimate the efficiency of this mechanism, we
have calculated the probability of theug&→ue& transition us-
ing Eq. ~6! at different pointsx, assuming that at each point
the molecule moves at a velocity corresponding to the kinetic
energy gained in the absence of the intramolecular potential.
The timet is chosen to maximize the probability. The result-
ing calculations are shown in Fig. 4. This diagram indicates
that the transition probability in a time of 1 fs at an optical-
power density ofI;1015 W/cm2 is ;1022, which justifies
our perturbation approach to the problem. Nonetheless, these
estimates are insufficient for an exact description of the dy-
namics of the process because they do not take into account
the specific shapes of trajectories, so direct calculations of
molecular dynamic parameters are necessary. Our results in-
dicate that the molecular motion can be described as classical
motion on fixed electronic levels and instantaneous quantum
jumps between them with probabilities determined by Eq.
~6!. This conclusion is based on Eq.~8!, which demonstrates
that the nondiagonal elements of the density operator include
fast phase factors randomly changing during a quantum tran-
sition. Since there is no specific mechanism establishing co-
herence, these elements may be omitted when perturbation
formulas are generalized for the case of large time intervals.
These considerations justify the quantum-jumps approxima-
tion.

The approximation was applied19 to the one-
dimensional, two-level model of light-induced dissociation
of HCl1 molecule in an intense IR field. As in the case of
isolated quantum jumps between potential surfaces discussed

FIG. 3. ~1! Probability per unit time of the quasiclassical transition and~2!
its distribution function versus coordinate.

FIG. 4. Expected transition probabilities per unit time. The energies of
levels modified by electric field are expressed in arbitrary units.
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in Sec. 2, our calculations indicate that for a strong nonreso-
nant field, the semiclassical approximation of quantum
jumps also yields a good description of molecular dynamics
if it really involves few active electronic levels. In this case,
the dynamics is essentially stochastic as a result of a lot of
quantum jumps and presents a specific example of stochastic
dynamics due to nonzero probability of random quantum
jumps at each instant of time. A similar example of stochas-
tic dynamics due to quantum jumps was discussed by Boiron
et al.24 and Heller.26

4. CONCLUSION

In Sec. 2 we demonstrated that the dynamics of a free
molecule subjected to a nonadiabatic perturbation due to an
isolated pseudocrossing of levels is really a random process
that can be described as a combination of random jumps
between quantum levels and quasiclassical motion on each
electronic level, which is the common quasiclassical ap-
proach to molecular dynamics. But in this case, the postulate
of vibrational energy conservation during a jump, which
leads to a change in the electronic potential, is not necessar-
ily valid. The nature of the switching is consistent with the
conservation of mean energy in an incoherent ensemble of
trajectories, so they are similar to quantum jumps in models
of Markovian processes in quantum systems expressed in
terms of wave functions.27

The quasiclassical approximation of random quantum
jumps also applies to the nonadiabatic dynamics of light-
induced dissociation of a molecule in an intense nonresonant
laser IR field if only a few electronic levels participate.
Hence, the approximation can be efficiently applied to com-
puter simulation of light-induced dissociation of polyatomic
molecules.
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NATO @Grant No. HTECH.CRG 94321~J. F.!#.

APPENDIX

The Wigner representation is based on a special repre-
sentationf̂→ f (X) of quantum operatorsf̂ through classical
functions f of coordinate and momenta,X5(q,p). The
product of two operators is expressed as28

f̂ ĝ→N X,]/]Xf SX1
1

2
C

]

]XTDg~X!, ~A1!

where the ordering operatorN indicates that the operator
]/]X is applied before multiplication byX, the symbolT
means transposition of the vectorX, andC is the commuta-
tion matrix of theX̂ operator corresponding to the canonical
variableX. This representation permits a simple description
of the quasiclassical limit used in our computer simulations
of molecular dynamics. Possibilities offered by different
quantum-mechanical representations were discussed, in par-
ticular, by Torres-Vega and Frederick.29

To second order in the perturbation@see Eq.~3!#, two
transformations which are very important in the description
of processes in a quantum system with the classical Hamil-
tonianH(X) are derived. They correspond to two evolution

processes described by two time variables,s5(t11t2)/2 and
t5t22t1 , where t1 and t2 are the time variables of the
second order of perturbation theory described by the opera-
tors T̂12(t) and T̂21(t) in combinations like
T̂21(t1)(T̂12(t2). The symbol( denotes the location of the
density operatorr̂ to be transformed. In terms of Wigner’s
representation, these two basic dynamic transformations are
presented by the evolution operators

L252
i

\
N X,]/]XFHSX1

1

2
C

]

]XTD2H

3SX2
1

2
C

]

]XTD G , ~A2!

L152
i

2\
N X,]/]XFHSX1

1

2
C

]

]XTD1H

3SX2
1

2
C

]

]XTD G . ~A3!

whereL2 is the quantum Liouvillian, i.e., the transforma-
tion ~‘‘superoperator’’! (2 i /\)@Ĥ(2(Ĥ# of the density
matrix r̂. The operator conjugate toL2 determines the
equation of motion in the Heisenberg representation. Its
eigenvectors correspond to projection operatorsP̂kl5uk&^ l u
of transitions between eigenstates, their eigenvalues being
2 ivkl5 i (El2Ek)/\. To lowest order in the Planck con-
stant, this is the classical Poisson bracketL15$H,(%,
which is derived from Eq.~A2! to first order inC;\. L1

corresponds to the superoperator (2 i /2\)@Ĥ(1(Ĥ# with
eigenvalues2 ivkl5 i (El1Ek)/2\. The terms of its pertur-
bation series areL052 iH(X)/\ in zeroth order and
L25(2 i /\)@\2D2/81H(X)# in second order, where

Dn52S i\ D n ]nH

]X1 . . . ]Xn
C1 . . .Cn

]

]X1
T . . .

]

]Xn
T , ~A4!

Ck and Xk denote copies ofC and X. The transformation
L1 describes the Schro¨dinger equation in terms of functions
of the variablesX5(q,p) instead of the standard represen-
tation in terms of Hilbert space whose elementsc(q) are
functions only of the coordinatesq.

The exact equation~5! for the transition operator is ex-
cessively for general the quasiclassical approximation. The
easiest way to simplify this equation is to ignore the operator
nature of the productT̂21(T̂12 and reduce the product of
operatorsS 1

12(t)5S 1
2 (2t)S 1

1 (t) to a factor which is not
an operator and after integration with respect tot yields the
factor T in Eq. ~6!. The functionS 1

12(t) can be derived
from the equation for its time derivative:

d

dt
S 1

12~t!5e2L2
~2!t@L2

~1!2L2
~2!#eL2

~1!t, ~A5!

where, according to Sec. 2,

L2
~k!52

i

\ FVk~q!1
p2

2m
2

\2

8 SVk9
]2

]p2
1

1

m

]2

]q2D G .
~A6!

The difference between the superoperators can be expressed,
using Eq.~A1!, as
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L2
~1!2L2

~2!52
i

\ FV12~q!2
\2

8
V129 ~q!

]2

]p2G , ~A7!

where only the first term on the right-hand side is an opera-
tor. The approximate equation~6! is derived by omitting in
Eq. ~A6! all the operators with the factor\2 and using the
approximation L2

(2)52( i /\)@V2(q)1p2/2m#. Since the
operatorsp and ]2/]p2 do not commute in Eq.~A7!, by
calculating the commutator of the first exponent in Eq.~A5!
and the respective term we obtain the following substitution:

]/]p→]/]p2 ipt/\m. ~A8!

Then we omit the terms with]/]p, which are responsible for
a slight transformation of a wave packet, and obtain an equa-
tion which does not contain operators:

d

dt
S 1

12~t!52
i

\
S 1

12~t!FV12~q!1
1

8
V129 ~q!

p2

m2 t2G .
~A9!

After integration with respect tot and using the expression

T̂21(T̂125u2&^2uT̂u1&^1u(u1&^1uT̂u2&^2u5^2uT̂u1&2u2&

3^1u(u1&^2u5@~\p/m!^2ud/dqu1&#2u2&

3^1u(u1&^2u,

where the last term includes a quantum transition operator,
which is a numerical nonoperator factor with respect to the
vibrational coordinates, we obtain the following expression
for T ~see Sec. 2!:

T ~X!5
2\

A3pV12

K1/3~x!.
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