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The applicability of classical concepts to light-induced nonadiabatic processes in polyatomic
molecules has been studied. The time dependence of the molecular density matrix in the Wigner
representation has been calculated, and an improved formula for the transition probability

per unit time, the basic formula for quasiclassical modelling of quantum jumps, has been derived.
The quantum nature of energy and momentum conservation during a quantum jump has

been investigated. We have demonstrated that the quasiclassical approximation is efficient in
modelling the dissociation of molecules under an intense laser beam. An investigation

of the light-induced dissociation of an HCmolecule is discussed. @996 American Institute

of Physics[S1063-776096)00806-3

1. INTRODUCTION H-+H,(v,j)—3H, wherev andj are specified vibrational
and rotational quantum numbers. Using the Tully—Preston

Molecules are interesting from the theoretical standpoingigorithm, they took into account the effects of interaction
because typical dynamic processes in them have both classjjith the first excited state, which has a conical crossing with
cal and quantum properties. Whereas the motion on a giveghe ground state. They demonstrated that transitions between
electronic level may be considered as a purely classical prasnergy surfaces lead to an increase in the cross section and
cess, the dynamics of electronic transitions is purely quanrate of dissociation from 2 to 44%. They compared calcula-
tum. Most calculations of molecular dynamics taking intotions for two different directions along which the energy
account all \ vibrational and rotational degrees of freedom conservation relation is satisfied during the transition on each
(N is the number of atoms in a molecylean be performed of the trajectories. Although the directions were almost or-
using only the classical approach to a polyatomic systemgogonal, the calculations did not depend on their choice.
Basic analytical results related to this problem were obtained A similar quantum-jump algorithm was proposed by
long ago by Landau and Lifshitand Zenef. Kuntz® He used this procedure to account for the large ex-

The quantum-mechanical approach to the dynamics Operimental cross section of the collision-induced dissociation
the electronic subsystem which is most simple and efficienteaction Ne- He; —Ne" +He+ He, whose dynamics is es-
in computer simulations was proposed by Tully and Pre3ton.sentially nonadiabatic because of the vibration in the initial
It describes the electronic dynamics of a molecule as a set Gftage of the reaction.
instantaneous quantum jumps between electronic levels. In This algorithm was also applied to the dissociation
the case of a system with two electronic levells) and  ArJ —Ar; +Ar.® Various dynamical processes were inter-
|2), the classical equations of motion for nuclei are inte-preted in terms of charge transfer and nonadiabatic dynam-
grated, then the electronic wave function along calculatedcs, and the applicability of the algorithm to the dynamics of
classical trajectories is found, and the probabiliti;# of  Ar. clusters was demonstrated.
finding the system in each electronic stéie (j=1,2) are Stine and Muckermancompared various modifications
determined. The system switches from one potential surfacef the quantum-hop algorithm and proposed an algorithm of
to another if the transition probability is larger than a numbettheir own based on a special switch criterion in the context of
from the interval (0,1) produced by a random-number genthe H; +H, collision. They demonstrated that the proposed
erator. After the transition, corrections to atomic momentamodified algorithm is consistent with the original Tully—
are added to satisfy the energy conservation condition foPreston algorithm and describes the process with an equal
each trajectory. degree of accuracy.

This algorithm and its modifications have been applied  The dynamics of light-induced dissociation of HCI and
to several physical problends!?Its subject areas include the Cl, molecules in crystalline Xe matrices was investigated by
dynamics of collisions of simple molecules, the dynamics ofGersonde and GabriBlThey found out that nonadiabatic
clusters, light-induced dissociation of molecules in matricestransitions between adiabatic states occur in less than one
the dynamics of a molecule in a solvent, and light-inducedpicosecond and lead to a fast recombination of fragments,
conformation dynamics of multiple-atom molecules. which results in a lower degree of dissociation. In such sys-

Blias et al* applied the algorithm of quantum jumps be- tems, there exists a specific mechanism which destroys co-
tween surfaces of constant electronic energy to calculation dierence between the adiabatic states.
the cross section of the collision-induced reaction  Another subject area of quantum-jump algorithms is the

1088 JETP 82 (6), June 1996 1063-7761/96/061088-07$10.00 © 1996 American Institute of Physics 1088



calculation of rates of nonadiabatic processes in condensedolecule in an intense IR fiefd, which will be demonstrated
materials*'° The central idea of the method is computerin Sec. 3. In the full Hamiltonianz=T+V the kinetic en-
simulation of molecular processes using the conventionagrgy can be expressed as

guantum-mechanical formula for transition ratébe so- A - - - - A

called “golden rule” of quantum mechanicgo calculate T=Tut+ Tt Tt Ta, Ty=PTP, (1)
transition rates due to nonadiabatic processes. The formulg
can be expressed in terms of the quasiclassical approxim
tion through a transformation which describes the syste
evolution using “frozen” quantum-mechanical Gaussian
wave packetd! It turned out that the Tully—Preston tech-
nique directly applied to this case did not yield sufficiently 5. —p, 7p, )
accurate results.

In recent years we analyz’édhe light-induced isomer- describe motion on fixed adiabatic levels, whereas nondiago-
ization of an isolated stylbene molecule in the space df 3 nal eIements]/k, Tk| correspond to electronic transitions
coordinates i is the number of atomsincluding the dy- |1)—|2) and|2)—|1) due to nonadiabatic processes. These
namics of all 72 vibrational degrees of freedom, using com-€lements are nonzero because the operdta@sdq are not
puter simulation and conventional molecular dynamics techeommutative, hence the respective perturbation is propor-
nigue. Since quantum-mechanical description of thetional to the Planck constaitand small if the dynamics on
electronic system of a polyatomic molecule is impracticablea single level is quasiclassical.
we simulated the internal conversion using a modified Thus, the nonadiabatic interaction is, generally speaking,
Tully—Preston technique. We employed the approximate forweak, although the dimensionless parameter which charac-
mula derived by Miller and Georgéfor the transition prob- terizes the applicability of the perturbation theory must be
abilities between electronic states along calculated classicaistimated in each specific case. As concerns the dynamics on
trajectories of nuclei. The transition probability at each mo-a single electronic level described by the operator in(Eq.
ment was a function of only the energy difference betweerit is, apparently, controlled in the lowest-order approxima-
the two states and their second derivatives at the respectit®n by classical equations with the Hamiltonian
point of the classical trajectory. The point of conventional 7%, = T+Vk, which does not include the nonadiabatic inter-
phase space at which the molecule transfers from the excitegttion. Hellef® and Stenholift described several approaches
electronic to ground state is very important for the subseto the problem of nonadiabatic dynamics, including quantum
quent evolution of the ground state and final distribution ofeffects on the dynamics of vibrations. In this paper, we only
reaction products. discuss the real problems of computer simulation of poly-

Thus the critical problem is to describe in detail the dy-atomic molecules.
namics of internal conversion as a random quantum- In our approach, we use perturbation theory to first and
mechanical process in terms of the density matrix. Mosksecond order in the nonadiabatic interaction. In the case of
theoretical studies in this field performed until now havetwo electronic levels with the initial stafd), we obtain the
described the molecular dynamics in terms of wavefollowing expression for the diagonal element of the density
functionsT®> *8which is insufficient in the case of polyatomic operator in the statg2):
molecules when, generally speaking, additional noise is in- 1 gt
troduced to simplify the description of a quantum transition -~ _ - o1 -y
between two electronic states. p2At)= ﬁzfo fodTld 2% (1) TaZa(m)

The paper presents an investigation based on the mo- "0 1 A
lecular dynamics described in terms of the density matrix Xp117 1 (72) T12#5(72). ©)

using the Wigner representatiéSec. 3. A formula for the o165 arekkth diagonal elements of the molecule density

_de”_s_'ty matrix has been derlved_. Its analysis, on one hamiinatrlx p, 74 (7) are operators for temporal evolution on the
justifies the concept of quantum jumps between classical trakth electronic level due to the Hamiltoniafy
k-

jectories on different surfaces of equal potential, on the other In order to obtain quasiclassical equations of motion, we

Eandt den;onsttrr]ates that sgng‘m;’mt cotrrecluons tohthe TuItIy must use an adequate mathematical description of the quan-
reston algorithm aré needed. in particular, we have intetg, ., dynamics on a single electronic level. One of widely

preted the energy conservation condition in quantum tran3|used techniques of this kind is the Wigner represent&tion

tions differently. The resulting formula for the state

based on a special representati‘enf(x) of quantum op-
transformation due to a jump may be also reduced in specific

Eratorsf in terms of classical functions of coordinates and

cases to the analytical formulas for the transition probabili
y P Y momentaX=(q,p). Assume that a molecule is in the state

proposed by Miller and Georg. |1) at the time moment=0. Then we derive the following
equation using second-order perturbation theory and the
Wigner representatiofsee Appendix

WhereP= P«(Q) are orthogonal projectors on theh elec-
Fonic eigenstates)y of the adiabatic potential operator

=V, P;+V,P,, which are functions of the vibrational co-
ordinatesq and timet. The diagonal elements

2. QUASICLASSICAL STOCHASTIC REPRESENTATION OF
QUANTUM DYNAMICS

X,t)= 2 (t— X
In this section we discuss the problem of two electronic AwzX,1)= f ds7 2 (t=9)A).7 2 (SWy(X.0).
levels in a molecule. It can be generalized to the case of a (4)
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Here w,, are density-matrix elements in the Wigner repre-
sentation,y'f:(t) = exp(%’;t) are the evolution operators for 12)
the kth levels defined by Eq4A2) and(A3), and

1 s A~ A
S= Pjisdr/i(—7)(T21®T12)(V/1+(7) )

is the operator of the electronic transition, where the quan-
tum transformationT,;© T4,) must be written in the Wigner
form, and integration may be performed in reality over infi-
nite limits. Equationg4) and (5) describe not only the qua-
siclassical asymptotic fort?,but also all second-order quan- 1 ; N

tum effects. Equation(5) describes the operator of the ! "

electronic tran_5|_tlon rate CaICUIat_ed ona CIaSS'?aI traJeCtoryFIG. 1. Energy levels of a quantum system described by the quantum-jumps
Nonetheless, it is demonstrated in the Appendix that the remodel. The system switches between the levels at random moments of time

sulting approximate expression for E®) is the same as in  ti, tz, ... ty, ... The motion between sequential quantum jumps at the
Ref. 13 if the quasiclassical approximation is valid, i.e., =~ momentst, andt,., is described in classical terms.
A8)=(2|1)s7Xy), (6)

where (2| is the time derivative of the vectd@|,, which is
a function of the coordinateg(s), and4(s) is simply the

time-dependent density of the quantum-jump probability,”, ; - .
which can be expressed as the product of the squared elgl-e" calculating the probability of the transitidieq. (6)],

ment of the nonadiabatic transition rate operator times th("é-md switching to another potential surface if the transition

effective duration”(X,) of the nonadiabatic interaction be- probability is higher than the ”“r."ber produced by a random-
tween electronic levels at the poikt. It can be expressed number generator. Arguments in favor of the noncoherent

as (the derivation is given in Appendix approximation f(_)_r some ob_Jects are given in Refs. 3 and 23,
and some specific cases, in which coherence effects are es-

approximation fors* (7). In this case the process is mod-
elled by integrating the classical equations of motion for nu-

2% 2\27 1B e x sential, are discussed in Refs. 24 and 25.
T(X)= \/§—K1/3(X)~ 36 T There is an apparent difference between our results and
V12 Viz X calculations by Tully and PrestdnOur scheme does not
42 V32 explicitly contain th?. condition of energy conservation in
x(X)= TR (7 each quantum transition postulated by Tully and Pre$ton.
Viz our opinion, their interpretation of the energy conservation

This approximation uses the exponential asymptotic form of@W IS not correct because of the energy uncertainty in the
the Bessel functiof,,+(x) at largey. Miller and Georg&® process of a nonadiabatic quantum jump. This uncertainty
used a similar expression with the exponential functom takes place because the transition occurs between the initial

to calculate the transition probability. state, which is an eigenstate of the adiabatic Hamiltonian in

We calculate nondiagonal elements by means of firstEd: (2), @nd & superposition of eigenstates owing to nondi-
order perturbation theory. After similar calculations in the 290nal elements in Eq1), which are nonzero during the

quasi-classical approximation, we obtain the following equa{iMe When the nonadiabatic interaction is important. The en-
tion for the dynamics on one electronic level: ergy uncertainty determined by the finiteness of this time is,

according to Eq(7), comparable to or greater th&h,. This
uncertainty is inevitable because the nonadiabatic Hamil-
tonian does not commute with the adiabatic Hamiltonians
and causes energy nonconservation during the jump. None-
theless, the average change in the vibrational kinetic energy
i can be calculated using EqA8), where the term with
)= ex;{— f—L(Vle—{jf/zy-%i}Tz/Z) X°X(1) (9  alop corresponds to the momentum shift, but the physical
sense of this term is different from that of the energy con-
describes the transformation due to the combined potential &fervation condition proposed by Tully. It accounts for the
two electronic levels, the exponential describes the phasgiomentum shift due to the force generated by the difference
difference due to the energy gap between the two levelssetween electronic potentials during the transition. This spe-
V21, and the operator cific quantum shift is not directly related to the energy con-
—1, o 1 o servation; rather, it is an analogue of such relatively small
XX 1) = exd{( 71+ .94,)12,0} 7] effects as the Lamb shift. It neither forbids the energy jump
describes classical motion due to the average potential gemor significantly affects the dynamics of the process. The
erated by the two electronic levdls) and|2). If the nondi-  transition operator in E(6) is modified to describe the mo-
agonal elements can be neglected, @y describes molecu- mentum  shift because of the additional term
lar quantum jumps (Fig. 1) in the quasiclassical (1/4)V],qrd/dp in Eq.(A9), derived from Eq(A7) after the

t .
Was(t) = f0<2l1>s9”21<t—s>wn<x,s>ds, ®

where the operator
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above mentioned transformation éfdp described by Eq.
(A8): 400} a

7 - 2 A I
/)(S):<2|1>sf_oc dr ex _g V12(q)7'

El

§ 200} 2
1 . . & !
+22 1,(9)g%73 ].y/p( 1,07°18), (10 2

whereq=p/m and.”,(») denotes the operator of momen- or v
tum shiftp—p+ 7.

Equation(10) describes the interference properties of the ) 100 200
molecular state after the quantum transition. The larger the time, fs
momentum shift, the faster the phase oscillations of the cor- 1500

responding component of the new electronic state. In reality,
large shifts do not occur because fast oscillations are washed 1000}
out, although at each moment of timaall shifts have equal R
amplitudes, irrespective of their values. The typical momen-
tum shift can be estimated as

Momentum, rad
o

Ap~ Vi ? 11 o

p~gVil”s % 11 1000+

and, using Eq(7), we can estimate the corresponding kinetic -1500}

energy: 0 100 200

A Ekin~V’1’2a2/8, time, fs

wherea is the dimension of the jump area. This energy is ofFIG. 2. () Quasiclassical energy of wave packet$bﬂower and(2) upper

the same order of magnitude 5., and the energy is not I(_evel_s, and(3) average quantum-mechanical energy of the system versus
) . - . time; (b) generalized average momentum (@n lower and(2) upper levels

conserved in the motion along a given trajectory. To CON~ersus time.

clude our discussion of the momentum shift, we assert on the

basis of Eqs(A2) and (A3) that, at least from the formal

viewpoint, the vibrational dynamics during a quantum tran- _ .

sition is controlled by the potential difference between lev- U100 =Dy sinfa(x—/2)], [x—m/2|<m/2

els, rather than by their sequence in time, as was postulatetith a smooth extrapolation of the functids,;(x) outside

in Ref. 13. Really, we have two different time variables, the quantum-jump region so that the motion on the lower

namelys=(t,+t,)/2 andr=t,—t,, wheres corresponds to level should be finite. Exact solutions have been obtained for

the motion on a fixed level and to the transition between this model using the Schdinger equation and appropriate

levels. The dynamics of a jump with respect to the variabldechniques® The parameters selected for this model were

s can be treated in terms of classical theory only in the Marchosen so that, on one hand, they corresponded to the quasi-

kovian approximation, when jumps are considered to be inclassical nature of motion on the upper leya), on the

stantaneous, since the dynamics with respect to the variabf@her hand, they approximately described a one-dimensional

7 is essentially quantum and is an analogue of the dynamiogiodel of the torsion dynamics of the stylbene molecule:

of wave functions, rather than classical variables. D,=10° cm !, D;=1.7x10" cm™ !, AV=50 cm !, and

In order to verify our results, we considered a one-E,<100 cni ™.
dimensional model of a molecule with two electronic states  Figure 2a shows quasi-classical energies corresponding
and a potential energy operator presented axa 2rray of to mean coordinates of wave packets of both levels corre-

the form sponding to the initial condition in the form of a Gaussian
. packet localized around=1 att=0. For comparison, the
~ [Ux(X) AV ) : S )
_ (12) average exact quantum-mechanical energy taking into ac
AV Uy(x))’ count interaction between levels is also given. The difference

between it and the quasi-classical calculation on the upper
level is due to the fluctuation component of the kinetic en-
ergy, which equalsh w,/4, where w, is the frequency of
fons of e vraiona<oordnaie pera The aray n TSN O5CHLen o e Lepes e, Our et on,
Eq. (12) correspor_1ds o the previqusly.introduced_adir_:\baticfrom the upper to lower level, the energy defect being close
potentialsV, ,, which can be described in terms of its e|gen-t0 the energy gap between ,the adiabatic levels. Figure 2b
valu\(/avsé have used the anproximation demonstrates that in the region where the packet of the lower

PP level is formed, approximate conservation of momentum but

U,(X)=Dy(x— 7/2)%>— E,, not energy takes place.

whereU 5(X) andAV are the operators of unperturbed adia-
batic vibrational levels and the matrix element of interaction
between the levels, respectively. The elemdhts are func-
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FIG. 3. (1) Probability per unit time of the quasiclassical transition &d Internuclear distance, A

its distribution function versus coordinate. - o o )
FIG. 4. Expected transition probabilities per unit time. The energies of

levels modified by electric field are expressed in arbitrary units.
The transition probability per unit time calculated using
Eq. (6) and the corresponding distribution of probability are
shown in Fig. 3. For the values @f;, , andAV given above VoV 324V %
and an effective masMz=10 %7 g-cn?, the conditions eg” Vegt T Ve
when the quasiclassical approximation can be applied to theshich determines the probability in Edqgl) and(6), depends
quantum jump are satisfied f&,— E;=500 cni !, which  sensitively on the field through the acceleratigni.e., the
corresponds to the transition probabiligg<10"3. nonadiabatic interaction is proportional to the field intensity
In Sec. 3, the analytical calculations are applied to comE_(t). Moreover, when the dipole momerds {X) are non-
puter simulation of molecular dynamics in an intense nonzero, the energy gay, o(x,t) at some time may be signifi-
resonant optical field generated by a laser that leads to @antly smaller than its unperturbed value if the difference
strong nonadiabatic interaction between electronic levels duAd=d,—d; is larger than the dipole-moment nondiagonal
to the interaction between the optical field and electronicelement. Therefore, the intense laser field is the natural driv-

dipole moment. ing force for quantum jumps when the field intensity is close
to zero.

3. QUANTUM TRANSITIONS INDUCED BY A STRONG In order to estimate the efficiency of this mechanism, we

LASER FIELD have calculated the probability of the)—|e) transition us-

L . . . . ing Eq.(6) at different pointx, assuming that at each point
Our approximation can be easily applied to simulations . . S
o ' the molecule moves at a velocity corresponding to the kinetic

of molecular dynamics induced by a strong laser field, when : : ) .
energy gained in the absence of the intramolecular potential.

the quantum nature of the vibrations is not important and thq_he timet is chosen to maximize the probability. The result-

guantum features of the process are only due to the nonzerg . P o —
. : . L . Ing calculations are shown in Fig. 4. This diagram indicates
nondiagonal elements of the interaction Hamiltonian, which

. . . that the transition probability in a time of 1 fs at an optical-
are responsible for interaction among quantum levels. . 5 . e L oE
, : i ower density off ~10'° W/cn? is ~10" 2, which justifies
We consider as an example the one-dimensional mod k
. . . our perturbation approach to the problem. Nonetheless, these
with two electronic levels. The potential energy of the sys-~ . . - -
) . estimates are insufficient for an exact description of the dy-
tem can be described by the array in EtR), where . .
namics of the process because they do not take into account

U a(X,t)=[V1AX)—dy AX)EL(1)], the specific shapes of trajectories, so direct calculations of
AV = —E(Ddy(R) molecular dynamic parametgrs are necessary. Our results_ in-
' L 1AR dicate that the molecular motion can be described as classical
V1 AX) andd; %) are the potential energies and dipole mo-motion on fixed electronic levels and instantaneous quantum
ments of the electronic levels, respectively, &dt) is the  jumps between them with probabilities determined by Eg.
laser-field intensity. The elements of the array are function$6). This conclusion is based on E@), which demonstrates
of the vibrational coordinate operat®r In the general case, that the nondiagonal elements of the density operator include
the nondiagonal elements in E{.2) describe the nonreso- fast phase factors randomly changing during a quantum tran-
nant interaction between the laser field and dipole-momersition. Since there is no specific mechanism establishing co-
elementd,,(X) responsible for the electronic transition. In herence, these elements may be omitted when perturbation
this case, the potentialé, (q) determined in Sec. 2 corre- formulas are generalized for the case of large time intervals.
spond to the eigenvaluég,; (x,t) of the array in Eq(12),  These considerations justify the quantum-jumps approxima-
which is a function of time through the laser-field intensity. tion.
At time t,=27k/w, the field intensity is zero and the pa- The approximation was appli€l to the one-
rameterVg o(X,t,) = Vg o(X,0), which is independent of the dimensional, two-level model of light-induced dissociation
field intensity, determines the coupling between the levels irof HCI* molecule in an intense IR field. As in the case of
Eqg. (12). At the same time, the second derivative isolated quantum jumps between potential surfaces discussed
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in Sec. 2, our calculations indicate that for a strong nonresoprocesses described by two time variabtes(t, +t,)/2 and

nant field, the semiclassical approximation of quantumr=t,—t,;, wheret; andt, are the time variables of the
jumps also yields a good description of molecular dynamicsecond order of perturbation theory described by the opera-
if it really involves few active electronic levels. In this case, tors  T;(t) and Ty(t) in combinations like

the dynamics is essentially stochastic as a result of a lot of ,,(t,) O T,4(t,). The symbol® denotes the location of the
quantum jumps and presents a specific example of stochastiensity operatop to be transformed. In terms of Wigner's
dynamics due to nonzero probability of random quantunyepresentation, these two basic dynamic transformations are
jumps at each instant of time. A similar example of stochaspresented by the evolution operators

tic dynamics due to quantum jumps was discussed by Boiron

24 6 i 1 9 ‘
et al* and Heller’ L= o] T X ECW) _
4, CONCLUSION 1 9
In Sec. 2 we demonstrated that the dynamics of a free x| X= ECW> ’ (A2)
molecule subjected to a nonadiabatic perturbation due to an
isolated pseudocrossing of levels is really a random process Fo=— '_]X i .7%(X+ ECLT +w
that can be described as a combination of random jumps 20 29X
between quantum levels and quasiclassical motion on each 1 9
electronic level, which is the common quasiclassical ap- X x__c_T) ) (A3)
proach to molecular dynamics. But in this case, the postulate 2 X

of vibrational energy conservation during a jump, whichwhere #_ is the quantum Liouvillian, i.e., the transforma-

leads to a change in the electronic potential, is not necessaipn (“superoperator’) (_i/ﬁ)[ﬂ@_@ﬁ] of the density

ily valid. The nature of the switching is consistent with the matrix p. The operator conjugate t¢_ determines the

conservation of mean energy in an incoherent ensemble @fguation of motion in the Heisenberg representation. Its

trajectories, so they are similar to quantum jumps in mocje'%igenvectors correspond to projection operal%(&|k><l|

of Markovian proce_sse§ in quantum systems expressed ¥¥ transitions between eigenstates, their eigenvalues being

terms of wave function8 —iwy=i(E,—Ey)/#%. To lowest order in the Planck con-
The quasiclassical approximation of random quantunyiant this is the classical Poisson bracket={.7,0},

jumps also applies to the nonadiabatic dynamics of lightyynich is derived from Eq(A2) to first order inC~#. %,

induced dissociation of a molecule in an intense ”O”resona%rresponds to the superoperateri(Zﬁ)[ﬁ@Jr@ﬁ] with
laser IR field if only a few electronic levels participate. eigenvalues—i wy =i (E,+ E)/2%. The terms of its pertur-

Hence, the approximation can be efficiently applied to comy,4tion series areZy=—i.7/(X)/% in zeroth order and
puter simulation of light-induced dissociation of polyatomic Zo=(—ilh)[ 27,18+ .77(X)] in second order, where
molecules. a - o ’

The work was supported by the International Science = r A4 c c i (A%
Foundation[Grants No. MS9000, MS9300V. N. Z.)] and ~n Al oXq..o.9X, LT axT T ax]

NATO [Grant No. HTECH.CRG 9432@. F)]. . :
[Grant No L. F] Cy and X, denote copies o and X. The transformation

. describes the Schdinger equation in terms of functions
of the variablesX=(q,p) instead of the standard represen-
The Wigner representation is based on a special repreation in terms of Hilbert space whose elements)) are

sentationf — f(X) of quantum operator§ through classical functions only of the coordinates

APPENDIX

functions f of coordinate and momenta=(q,p). The The exact equatiofb) for the transition operator is ex-
product of two operators is expressed®as cessively for general the quasiclassical approximation. The
easiest way to simplify this equation is to ignore the operator
- 1 9 y IS
fg—.1" fl X+ =C—|g(X) (A1) nature of the product,;©T;, and reduce the product of
X,dl9X 2 oX" ’ A% N_ 20 N A o
operators(7)=.7"(— 7). (7) to a factor which is not

where the ordering operator " indicates that the operator an operator and after integration Wltlg respect tgields the
dloX is applied before multiplication b, the symbolT  factor.7”in Eq. (6). The function.”"(7) can be derived
means transposition of the vectér andC is the commuta-  from the equation for its time derivative:
tion matrix of theX operator corresponding to the canonical @ W
variableX. This representation permits a simple description " Yrn=e 72 T4V — 421e”2 7, (A5)
of the quasiclassical limit used in our computer simulations
of molecular dynamics. Possibilities offered by different where, according to Sec. 2,
quantum-mechanical representations were discussed, in par- . 2 2 2 2
k . i p d 19
ticular, by Torres-Vega and Frederi€k. G W= V(P F e = |V —+ = —
: : =2 Al VDT o T B\ Vkp2 T mag?) ||

To second order in the perturbatisee Eq.(3)], two P aq
transformations which are very important in the description (AB)
of processes in a quantum system with the classical HamilThe difference between the superoperators can be expressed,
tonian.7Z(X) are derived. They correspond to two evolution using Eq.(Al), as
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